

# Low-Power, RRIO, 1MHz Operational Amplifier for Cost-Sensitive Systems

#### **General Description**

The ET8500X series are low voltage (1.8V to 5.5V) operational amplifiers included single-channel (ET85001) and dual-channel (ET85002) and quad-channel (ET85004) with rail-to-rail input and output swing capabilities. These op amps provide a cost-effective solution for space-constrained applications such as smoke detectors, wearable electronics, and small appliances where low-voltage operation and high capacitive-load drive are required. The capacitive-load drive is 500 pF and the resistive open-loop output impedance makes stabilization easier with much higher capacitive-loads. ET8500X features unity-gain stability, an integrated RFI and EMI rejection filter, and no-phase reversal in overdrive conditions.

The ET8500X are specified for the extended industrial/automotive temperature range (-40°C to +125°C).

The ET85001 single amplifier is available in SOT23-5, SC70-5, DFN4, and SOP8 packages.

The ET85002 dual amplifier is available in MSOP8, SOP8 packages.

The ET85004 quad amplifier is available in a TSSOP14 package.

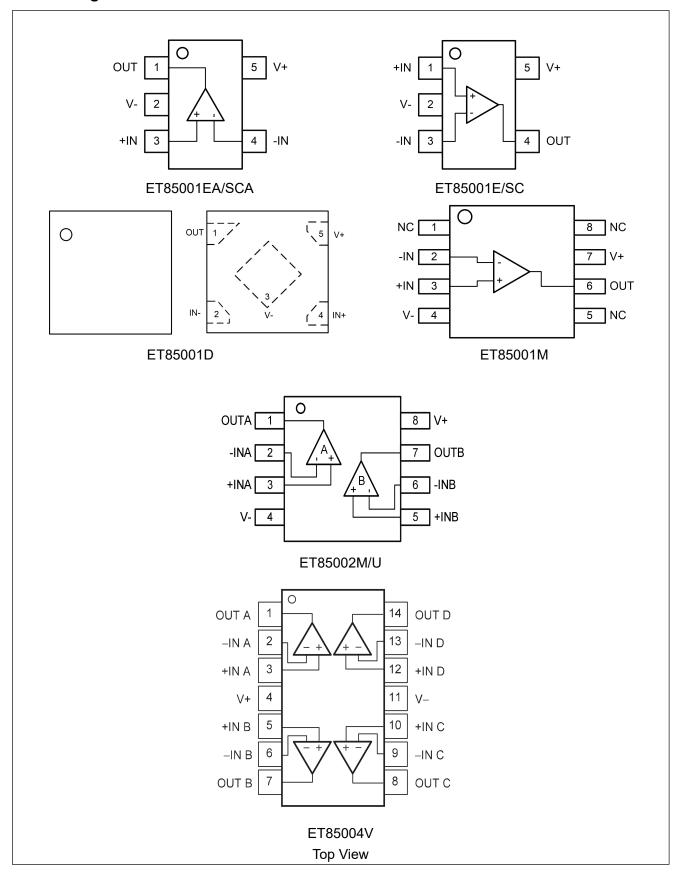
#### **Features**

- Low input offset voltage: ±0.4 mV (Typ)
- Unity-gain bandwidth: 1 MHz (Typ)
- Low broadband noise: 27 nV/√Hz (Typ)
- Low input bias current: 5 pA (Typ)
- Low quiescent current: 60 μA/Ch (Typ)
- Rail-to-rail input and output
- Unity-gain stable
- Internal RFI and EMI filter
- Operational at supply voltages as low as 1.8 V
- Easier to stabilize with higher capacitive load
- Extended temperature range: -40°C to 125°C

### **Applications**

- Temperature sensors
- Sensor signal conditioning
- Power modules
- Active filters
- Low-side current sensing

### **Device information**


### ET 8500 <u>X</u>1 <u>X</u>2

| X₁ Channel number |                |  |
|-------------------|----------------|--|
| 1                 | Single channel |  |
| 2 Dual channel    |                |  |
| 4                 | Quad channel   |  |

| <u>X</u> ⊘ Package |     |               |  |
|--------------------|-----|---------------|--|
| M SOP8             |     | SOP8          |  |
| U                  |     | MSOP8         |  |
| V                  |     | TSSOP14       |  |
| D                  |     | DFN4(0.8×0.8) |  |
| Е                  | EA  | SOT23-5       |  |
| SC                 | SCA | SC70-5        |  |

| Part No.   | Package         | Packing Option  | Marking | MSL |
|------------|-----------------|-----------------|---------|-----|
| ET85001E   | SOT23-5         | Tape and Reel , | 85001   | 3   |
| E100001E   | 30123-3         | 3k/Reel         | XXXXX   | S . |
| ET85001EA  | SOT23-5         | Tape and Reel , | 85001A  | 3   |
| E100001EA  | 00120-0         | 3k/Reel         | XXXXX   | 3   |
| ET85001SC  | SC70-5          | Tape and Reel , | 85001   | 1   |
| E1000013C  | 3070-3          | 3k/Reel         | XXXXX   | I   |
| ET85001SCA | SC70-5          | Tape and Reel , | 801A    | 1   |
| E1000015CA | 3070-3          | 3k/Reel         | XXXXX   | I   |
| ET85001D   | DFN4(0.8×0.8)   | Tape and Reel , |         | 1   |
| E163001D   | DI 144(0.0×0.0) | 3k/Reel         | 1X      | I   |
| ET85001M   | SOP8            | Tape and Reel , | 801M    | 3   |
| E163001W   | 3010            | 4k/Reel         | XXXXX   | 3   |
| ET85002M   | SOP8            | Tape and Reel , | 85002   | 3   |
| E163002W   | 3010            | 4k/Reel XXXXX   | 3       |     |
| ET85002U   | MSOP8           | Tape and Reel , | 802U    | 3   |
| E1030020   | IVIOOFO         | 4k/Reel         | XXXXX   | 3   |
| ET85004V   | TSSOP14         | Tape and Reel , | 804     | 3   |
| E103004V   | 1000114         | 4k/Reel         | XXXXX   | 3   |

### **Pin Configuration**



### **Pin Function**

|          | Pin Number | Symbol | Descriptions        |
|----------|------------|--------|---------------------|
|          | 1          | NC     | 1                   |
|          | 2          | -IN    | Inverting input     |
|          | 3          | +IN    | Non-inverting input |
| ET85001M | 4          | V-     | Negative supply     |
|          | 5          | NC     | 1                   |
|          | 6          | OUT    | Output              |
|          | 7          | V+     | Positive supply     |
|          | 8          | NC     | 1                   |

|            | Pin Number | Symbol | Descriptions        |
|------------|------------|--------|---------------------|
|            | 1          | OUT    | Output              |
| ET85001EA  | 2          | V-     | Negative supply     |
| ET85001SCA | 3          | +IN    | Non-inverting input |
|            | 4          | -IN    | Inverting input     |
|            | 5          | V+     | Positive supply     |

|           | Pin Number | Symbol | Descriptions        |
|-----------|------------|--------|---------------------|
|           | 1          | +IN    | Non-inverting input |
| ET85001E  | 2          | V-     | Negative supply     |
| ET85001SC | 3          | -IN    | Inverting input     |
|           | 4          | OUT    | Output              |
|           | 5          | V+     | Positive supply     |

|          | Pin Number | Symbol | Descriptions        |
|----------|------------|--------|---------------------|
|          | 1          | OUT    | Output              |
| FT95004D | 2          | -IN    | Inverting input     |
| ET85001D | 3          | V-     | Negative supply     |
|          | 4          | +IN    | Non-inverting input |
|          | 5          | V+     | Positive supply     |

|          | Pin Number | Symbol | Descriptions        |
|----------|------------|--------|---------------------|
|          | 1          | OUTA   | Output              |
| ET85002M | 2          | -INA   | Inverting input     |
| ET85002U | 3          | +INA   | Non-inverting input |
|          | 4          | V-     | Negative supply     |
|          | 5          | +INB   | Non-inverting input |

| 6 | -INB | Inverting input |
|---|------|-----------------|
| 7 | OUTB | Output          |
| 8 | V+   | Positive supply |

|          | Pin Number | Symbol | Descriptions        |
|----------|------------|--------|---------------------|
|          | 1          | OUTA   | Output              |
|          | 2          | -INA   | Inverting input     |
|          | 3          | +INA   | Non-inverting input |
|          | 4          | V+     | Positive supply     |
|          | 5          | +INB   | Non-inverting input |
|          | 6          | -INB   | Inverting input     |
| ET85004V | 7          | OUTB   | Output              |
|          | 8          | OUTC   | Output              |
|          | 9          | -INC   | Inverting input     |
|          | 10         | +INC   | Non-inverting input |
|          | 11         | V-     | Negative supply     |
|          | 12         | +IND   | Non-inverting input |
|          | 13         | -IND   | Inverting input     |
|          | 14         | OUTD   | Output              |

### **Absolute Maximum Ratings**

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

| Symbol           | Parameter                                 | Value                 | Unit |
|------------------|-------------------------------------------|-----------------------|------|
| Vs               | Supply Voltage <sup>(1)</sup> (V+) - (V-) | 0 to 6                | V    |
| V <sub>IN</sub>  | Signal input terminals Voltage            | (V-)-0.3V to (V+)+0.3 | V    |
| V <sub>ID</sub>  | Differential Input Voltage                | (V+) - (V-)+0.2       | V    |
| V <sub>ESD</sub> | ESD (Human Body Model)                    | ±2000                 | V    |
| T <sub>STG</sub> | Storage Temperature Range                 | -65 to +150           | °C   |
| TJ               | Junction Temperature Range                | -65 to +150           | °C   |
| T <sub>A</sub>   | Operating Temperature Range               | -40 to +125           | °C   |

Note1: All voltage values, except differential voltage are with respect to network terminal.

### **Recommended Operating Conditions**

| Symbol         | Parameter                   | Value                  | Unit |
|----------------|-----------------------------|------------------------|------|
| Vs             | Supply Voltage: (V+) - (V-) | 1.8(±0.9) ~ 5.5(±2.75) | V    |
| T <sub>A</sub> | Operating Temperature Range | -40 ~ +125             | °C   |

#### **Thermal Characteristics**

| Symbol            | Package       | Ratings                                                         | Value | Unit |
|-------------------|---------------|-----------------------------------------------------------------|-------|------|
| R <sub>0</sub> JA | SOP8          | Thermal Characteristics,<br>Thermal Resistance, Junction-to-Air | 160   | °C/W |
|                   | MSOP8         |                                                                 | 200   | °C/W |
|                   | SOT23-5       |                                                                 | 233   | °C/W |
|                   | SC70-5        |                                                                 | 240   | °C/W |
|                   | DFN4(0.8×0.8) |                                                                 | 250   | °C/W |
|                   | TSSOP14       |                                                                 | 148   | °C/W |

### **Electrical Characteristics**

 $V_S$  = (V+) - (V-) = 1.8 V to 5.5 V (± 0.9 V to ± 2.75 V),  $T_A$  = 25°C,  $R_L$  = 10 k $\Omega$  connected to  $V_S/2$ , and  $V_{CM}$  =  $V_{OUT}$  =  $V_S/2$  (unless otherwise noted)

| Symbol                           | Parameter                                     | Conditions                                                                                                                               | Min              | Тур  | Max      | Unit             |  |  |  |
|----------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|------|----------|------------------|--|--|--|
| OFFSET VOLTAGE                   |                                               |                                                                                                                                          |                  |      |          |                  |  |  |  |
| Vos                              | Input offset voltage                          | V <sub>S</sub> = 5 V                                                                                                                     |                  | ±0.4 | ±2       | m\/              |  |  |  |
|                                  |                                               | V <sub>S</sub> = 5 V, T <sub>A</sub> = -40°C to 125°C                                                                                    | = -40°C to 125°C |      | ±2.5     | mV               |  |  |  |
| dV <sub>OS</sub> /dT             | V <sub>OS</sub> vs temperature                | T <sub>A</sub> = -40°C to 125°C                                                                                                          |                  | ±0.6 |          | μV/°C            |  |  |  |
| PSRR                             | Power-supply rejection ratio                  | V <sub>S</sub> = 1.8 to 5.5 V, V <sub>CM</sub> = (V-)                                                                                    | 80               | 105  |          | dB               |  |  |  |
| INPUT                            | INPUT VOLTAGE RANGE                           |                                                                                                                                          |                  |      |          |                  |  |  |  |
| V <sub>CM</sub>                  | Common-mode<br>voltage range                  | No phase reversal,<br>rail-to-rail input                                                                                                 | (V-)-0.1         |      | (V+)+0.1 | V                |  |  |  |
|                                  |                                               | V <sub>S</sub> = 1.8 V,                                                                                                                  |                  |      |          | - dB             |  |  |  |
|                                  | Common-mode<br>rejection ratio                | $(V-)$ - 0.1 V < $V_{CM}$ < $(V+)$ - 1.4 V,<br>$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$                                       |                  | 86   |          |                  |  |  |  |
| CMRR                             |                                               | $V_S = 5.5 \text{ V},$<br>$(V-) - 0.1 \text{ V} < V_{CM} < (V+) - 1.4 \text{ V},$<br>$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ |                  | 95   |          |                  |  |  |  |
|                                  |                                               | $V_S = 5.5 \text{ V},$<br>$(V-) -0.1 \text{ V} < V_{CM} < (V+) + 0.1 \text{ V},$<br>$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$  |                  | 77   |          |                  |  |  |  |
|                                  |                                               | $V_S = 1.8 \text{ V},$<br>$(V-) - 0.1 \text{ V} < V_{CM} < (V+) + 0.1 \text{ V},$<br>$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$ |                  | 68   |          |                  |  |  |  |
| INPUT                            | BIAS CURRENT                                  |                                                                                                                                          |                  |      |          |                  |  |  |  |
| I <sub>B</sub>                   | Input bias current                            | V <sub>S</sub> = 5 V                                                                                                                     |                  | ±5   |          | pА               |  |  |  |
| los                              | Input offset current                          |                                                                                                                                          |                  | ±2   |          | pА               |  |  |  |
| NOISE                            |                                               |                                                                                                                                          |                  |      | _        |                  |  |  |  |
| En                               | Input voltage noise<br>(peak to peak)         | f = 0.1 Hz to 10 Hz, Vs = 5 V                                                                                                            |                  | 4.7  |          | μV <sub>PP</sub> |  |  |  |
| en                               | Input voltage                                 | f = 1 kHz, Vs = 5 V                                                                                                                      |                  | 30   |          | n) //-/  !-      |  |  |  |
|                                  | noise density                                 | f = 10 kHz, V <sub>S</sub> = 5 V                                                                                                         |                  | 27   |          | -nV/√Hz          |  |  |  |
| i <sub>n</sub>                   | Input current<br>noise density <sup>(2)</sup> | f = 1 kHz, V <sub>S</sub> = 5 V                                                                                                          |                  | 23   |          | fA/√Hz           |  |  |  |
| INPUT CAPACITANCE <sup>(2)</sup> |                                               |                                                                                                                                          |                  |      |          |                  |  |  |  |
| C <sub>ID</sub>                  | Differential                                  |                                                                                                                                          |                  | 1.5  |          | pF               |  |  |  |
| C <sub>IC</sub>                  | Common-mode                                   |                                                                                                                                          |                  | 5    |          | pF               |  |  |  |

## **Electrical Characteristics (Continued)**

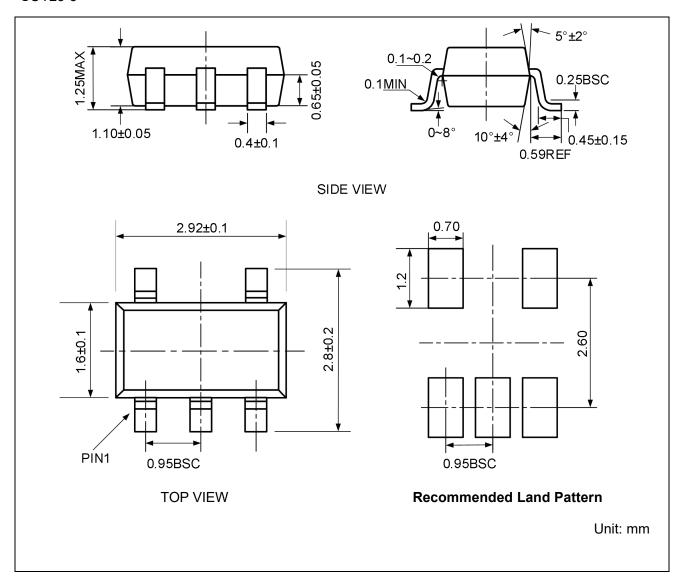
| Symbol                                  | Parameter                                    | Conditions                                                                                              | Min        | Тур   | Max         | Unit |  |
|-----------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|-------|-------------|------|--|
| OPEN-I                                  | OOP GAIN                                     |                                                                                                         |            |       |             |      |  |
| Avo                                     | Open-loop<br>voltage gain                    | $V_S = 5.5 \text{ V}, R_L = 10 \text{ k}\Omega$<br>(V-) + 0.05 V < $V_O$ < (V+) - 0.05 V                | 104        | 117   |             |      |  |
|                                         |                                              | $V_S = 1.8 \text{ V}, R_L = 10 \text{ k}\Omega$<br>(V-) + 0.04 V < V <sub>O</sub> < (V+) - 0.04 V       |            | 100   |             | dB   |  |
|                                         |                                              | $V_S = 1.8 \text{ V}, R_L = 2 \text{ k}\Omega$<br>(V-) + 0.1 V < V <sub>0</sub> < (V+) - 0.1 V          |            | 115   |             |      |  |
|                                         |                                              | $V_S = 5.5 \text{ V}, R_L = 2 \text{ k}\Omega$<br>(V-) + 0.15 V < V <sub>O</sub> < (V+) - 0.15 V        |            | 130   |             |      |  |
| FREQU                                   | ENCY RESPONSE                                |                                                                                                         |            |       |             |      |  |
| GBW                                     | Gain-bandwidth product                       | V <sub>S</sub> = 5 V                                                                                    |            | 1     |             | MHz  |  |
| $\phi_{m}$                              | Phase margin                                 | V <sub>S</sub> = 5 V, G = 1                                                                             |            | 78    |             | 0    |  |
| SR                                      | Slew rate                                    | V <sub>S</sub> = 5 V                                                                                    |            | 2     |             | V/µs |  |
| ts                                      | Settling time <sup>(2)</sup>                 | To 0.1%, $V_S = 5 \text{ V}$ , 2V step,<br>$G = +1$ , $C_L = 100 \text{ pF}$                            |            | 2.5   |             | - µs |  |
|                                         |                                              | To 0.01%, $V_S = 5 \text{ V}$ , $2\text{V}$ step,<br>$G = +1$ , $C_L = 100 \text{ pF}$                  |            | 3     |             |      |  |
| t <sub>OR</sub>                         | Overload recovery time                       | V <sub>S</sub> = 5 V, V <sub>IN</sub> × gain > V <sub>S</sub>                                           |            | 0.85  |             | μs   |  |
| THD+N                                   | Total harmonic<br>distortion + noise         | $V_S = 5.5 \text{ V}, V_{CM} = 2.5 \text{ V},$<br>$V_O = 1 \text{ V}_{RMS}, G = +1, f = 1 \text{ kHz},$ |            | 0.004 |             | %    |  |
| OUTPU                                   | Т                                            |                                                                                                         |            |       |             |      |  |
| Vo                                      | Voltage output swing                         | $V_S = 5.5 \text{ V}, R_L = 10 \text{ k}\Omega$                                                         |            | 10    | 20          | m\/  |  |
| • • • • • • • • • • • • • • • • • • • • | from supply rails                            | $V_S = 5.5 \text{ V}, R_L = 2 \text{ k}\Omega$                                                          |            | 35    | 55          | mV   |  |
| Isc                                     | Short-circuit current                        | V <sub>S</sub> = 5.5 V                                                                                  |            | ±40   |             | mA   |  |
| Zo                                      | Open-loop output<br>impedance <sup>(2)</sup> | V <sub>S</sub> = 5 V, <i>f</i> = 1 MHz                                                                  |            | 1200  |             | Ω    |  |
| POWER                                   | SUPPLY                                       |                                                                                                         |            |       |             |      |  |
| Vs                                      | Specified voltage range                      |                                                                                                         | 1.8 (±0.9) |       | 5.5 (±2.75) | V    |  |
|                                         | Quiogoat aurrent                             | I <sub>O</sub> = 0 mA, V <sub>S</sub> = 5.5 V                                                           |            | 60    | 85          |      |  |
| lα                                      | Quiescent current per amplifier              | $I_O = 0$ mA, $V_S = 5.5$ V,<br>$T_A = -40$ °C to 125°C                                                 |            |       | 90          | μΑ   |  |

Note2:Guaranteed by design.

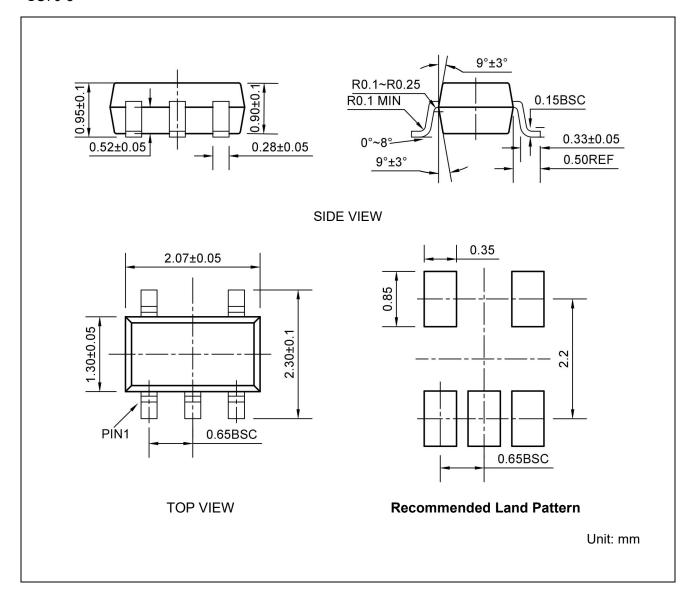
### **Application Notes**

#### **Layout Guidelines**

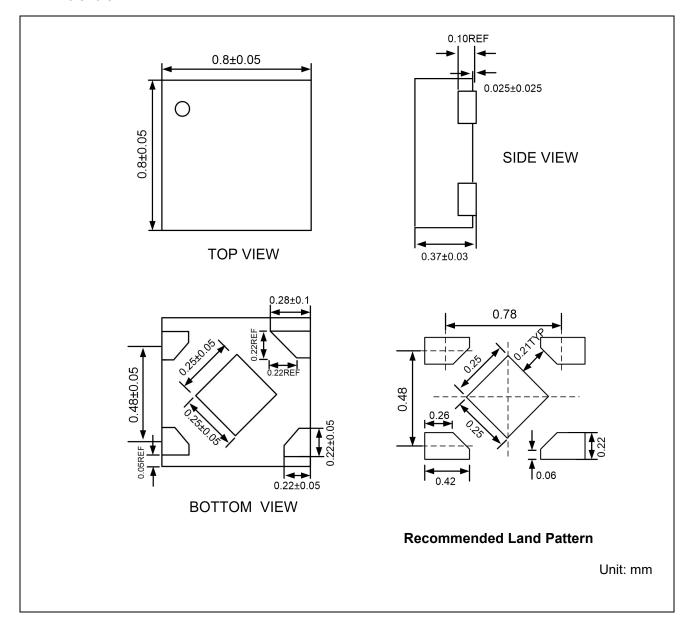
For best operational performance of the device, use good PCB layout practices, including:


Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring.

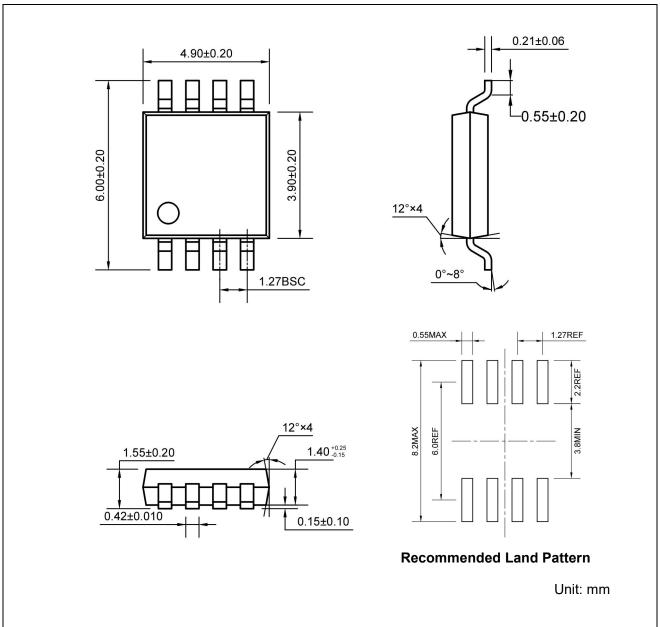
To reduce parasitic coupling, run the input traces as far away from the supply lines and digital signal as possible.Low-ESR,  $0.1~\mu F$  ceramic bypass capacitors must be connected between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable to single supply applications.


Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.

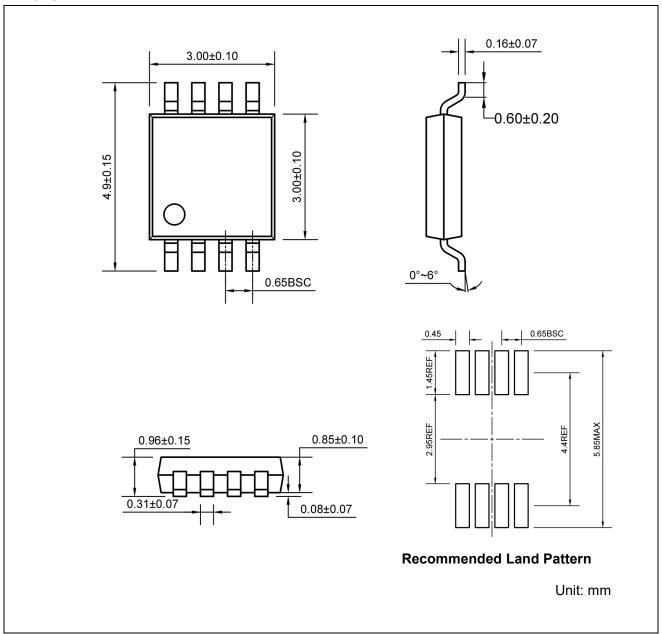
### **Package Dimension**


### SOT23-5

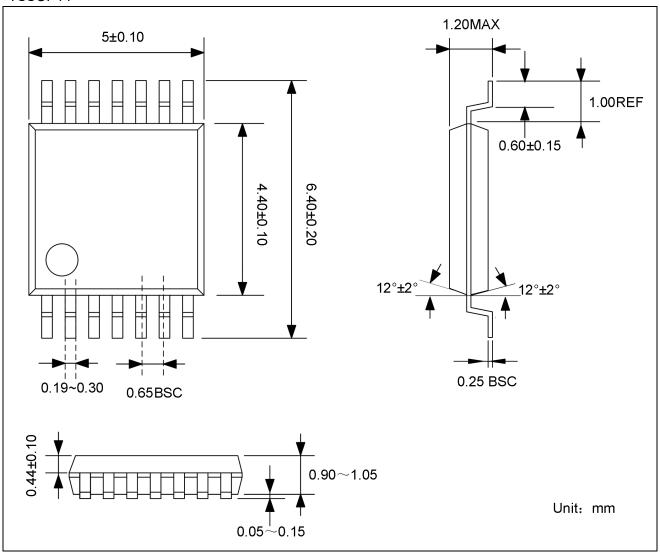



#### SC70-5




#### DFN4-0.8×0.8




#### SOP8



### MSOP8



### TSSOP14



## **Revision History and Checking Table**

| Version | Date       | Revision Item                | Modifier | Function & Spec<br>Checking | Package & Tape<br>Checking |
|---------|------------|------------------------------|----------|-----------------------------|----------------------------|
| 0.0     | 2022-9-21  | Preliminary Version          | Shibo    | Wanggp                      | Liujy                      |
| 1.0     | 2023-4-6   | Original Version             | Huyt     | Chenh                       | Liujy                      |
| 1.1     | 2023-9-28  | Naming updates               | Huyt     | Wanggp                      | Liujy                      |
| 1.2     | 2024-4-8   | Add TSSOP14<br>Package       | Huyt     | Wanggp                      | Liujy                      |
| 1.3     | 2024-11-27 | IQ max changed 82uA          | Shibo    | Wanggp                      | Liujy                      |
| 1.4     | 2025-3-27  | Update VOS max<br>and IQ max | Huyt     | Chenh,Tangyx                | Liujy                      |
| 1.5     | 2025-4-11  | Update MSL Grade             | Huyt     | Chenh, Tangyx               | Liujy                      |
| 1.6     | 2025-6-25  | Update format                | Huyt     | Wanggp                      | Liujy                      |