

Synchronous Boost Converter with Ultra-Low IQ

General Description

The ET82097x device is a synchronous boost converter with ultra-low quiescent current. The device is designed for products powered by an alkaline battery, lithium battery or rechargeable Li-lon battery, for which high efficiency under light load condition is critical to achieve long battery life operation.

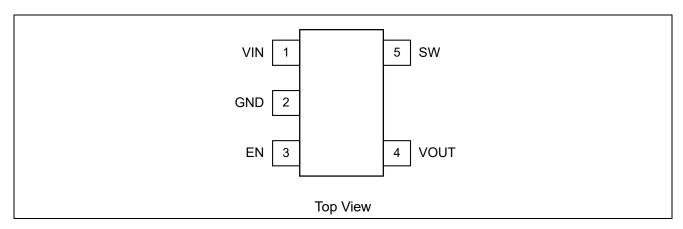
The ET82097x offers different fixed output voltage versions. Hysteric control topology has been employed to obtain maximal efficiency at minimal quiescent current. ET82097x can achieve up to 80% efficiency at 100µA load. It can also support up to 300mA output current from 3.3V to 5V conversion, and achieve up to 93% at 200mA load.

The ET82097x supplies both Down Mode and Pass-Through operations for different applications. In Down Mode, the output voltage can still be regulated at target value even when input voltage is higher than output voltage. In Pass-Through Mode, the output voltage follows input voltage.

The ET82097x exits Down Mode and enters into Pass-Through Mode when V_{IN} > V_{OUT} +0.35V. The ET82097x supports true shutdown function when it is disabled, which disconnects the load from the input supply to reduce the current consumption.

The ET82097x available in SOT23-5 Package.

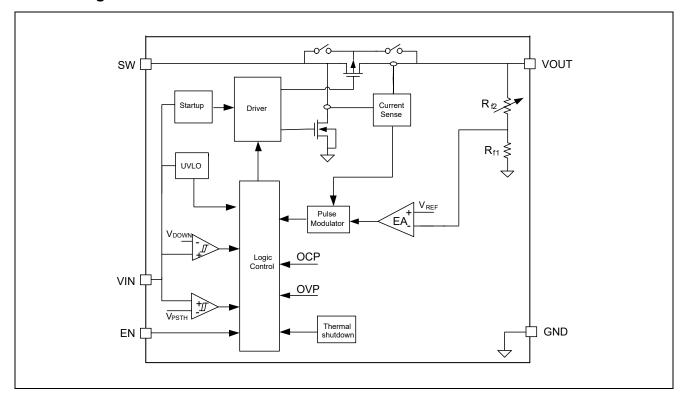
Features


- 250nA Ultra-Low IQ into VIN Pin
- 3.5uA IQ into VOUT Pin
- Operating Input Voltage from 0.7V to 5.5V
- Fixed Output Voltage Versions 2.5V 3.0V 3.3V 3.6V 4.5V 5.0V
- Minimum 0.8A Switch Peak Current Limit
- Regulated Output Voltage in Down Mode
- True Disconnection During Shutdown
- Up to 80% Efficiency at 100μA Load with 3.8V VIN and 5V Output
- Up to 93% Efficiency
- SOT23-5 package

Device Information

ET 82097 XXX

XXX Output Voltage						
		V25	2.5V fixed output	V30	3.0V fixed output	
1	3.3V fixed output	V36	3.6V fixed output	V45	4.5V fixed output	
		V50	5.0V fixed output			


Pin Configuration

Pin Function

Pin Name	Pin No.	Type	Description
VIN	1	IN	IC power supply input
GND	2	PWR	Ground
EN	3	IN	Enable logic input, Logic high voltage enables the device; logic low voltage disables the device. Don't let it floating
VOUT	4	PWR	Boost converter output.
SW	5	PWR	Switch pin of the converter

Block Diagram

Functional Description

Boost Controller Operation

The ET82097x boost converter is controlled by a hysteretic current mode controller. This controller regulates the output voltage by keeping the inductor ripple current constant in the range of 300mA and adjusting the offset of this inductor current depending on the output load. Since the input voltage, output voltage and inductor value all affect the rising and falling slopes of inductor ripple current, the switching frequency is not fixed and is determined by the operation condition. If the required average input current is lower than the average inductor current defined by this constant ripple, the inductor current goes discontinuously to keep the efficiency high under light load condition. If the load current is reduced further, the boost converter enters into Burst mode.

In Burst mode, the boost converter ramps up the output voltage with several switching cycles. Once the output voltage exceeds a setting threshold, the device stops switching and goes into a sleep status. In sleep status, the device consumes less quiescent current. It resumes switching when the output voltage is below the setting threshold. It exits the Burst mode when the output current can no longer be supported in this mode.

To achieve high efficiency, the power stage is realized as a synchronous boost topology. The output voltage VOUT is monitored via an external or internal feedback network which is connected to the voltage error amplifier. To regulate the output voltage, the voltage error amplifier compares this feedback voltage to the internal voltage reference and adjusts the required offset of the inductor current accordingly.

Under-Voltage Lockout

An under-voltage lockout (UVLO) circuit stops the operation of the converter when the input voltage drops below the typical UVLO threshold of 0.4V. A hysteresis of 200mV is added so that the device cannot be

enabled again until the input voltage goes up to 0.6V. This function is implemented in order to prevent malfunctioning of the device when the input voltage is between 0.4V and 0.6V.

Enable and Disable

When the input voltage is above UVLO rising threshold and the EN pin is pulled to high voltage, the ET82097x is enabled. When the EN pin is pulled to low voltage, the ET82097x goes into shutdown mode. In shutdown mode, the device stops switching and the rectifying PMOS fully turns off, providing the completed disconnection between input and output. Less than 0.5µA input current is consumed in shutdown mode.

Soft Start

After the EN pin is tied to high voltage, the ET82097x begins to startup. At the beginning, the device operates at the boundary of Discontinuous Conduction Mode (DCM) and Continuous Conduction Mode (CCM), and the inductor peak current is limited to around 200mA during this stage. When the output voltage is charged above approximately 1.6V, the device starts the hysteric current mode operation. The soft start function reduces the inrush current during startup. After VOUT reaches the target value, soft start stage ends and the peak current is determined by the output of an internal error amplifier which compares the feedback of the output voltage and the internal reference voltage.

The ET82097x is able to start up with 0.7V input voltage with larger than $3k\Omega$ load. However, if the load during startup is so heavy that the ET82097x fails to charge the output voltage above 1.6V, the ET82097x can't start up successfully until the input voltage is increased or the load current is reduced. The startup time depends on input voltage and load current.

Current Limit Operation

ET82097x features cycle-by-cycle over current protection function. If the inductor peak current reaches the current limit threshold ILIM, the main switch turns off so as to stop further increase of the input current. In this case the output voltage will decrease until the power balance between input and output is achieved. If the output drops below the input voltage, the ET82097x enters into Down Mode. The peak current is still limited by ILIM cycle-by-cycle in Down Mode. If the output drops below 1.6V, the ET82097x enters into startup process again. In Pass-Through operation, current limit function is not enabled.

Output Short-to-Ground Protection

If short to ground condition occurs, the short current is limited at about 85mA. Once the short condition is removed, the ET82097x goes back to soft start again and regulates the output voltage.

Over Voltage Protection

ET82097x has an output over-voltage protection (OVP) to protect the device in case that the external feedback resistor divider is wrongly populated. When the output voltage of the ET82097x exceeds the OVP threshold of 5.8V, the device stops switching. Once the output voltage falls to 0.1V below the OVP threshold, the device starts operating again.

Down Mode Regulation and Pass-Through Operation

The ET82097x features Down Mode and Pass-Through operation when input voltage is close to or higher than output voltage.

In the Down Mode, output voltage is regulated at target value even when VIN>VOUT. The control circuit changes the behavior of the rectifying PMOS by pulling its gate to input voltage instead of to ground. In this

way, the voltage drop across the PMOS is increasing as high as to regulate the output voltage.

The power loss also increases in this mode, which needs to be taken into account for thermal consideration. In the Pass-Through operation, the boost converter stops switching.

The rectifying PMOS constantly turns on and low side switch constantly turns off. The output voltage is the input voltage minus the voltage drop across the dc resistance (DCR) of the inductor and the on-resistance of the rectifying PMOS.

With V_{IN} ramping up, the ET82097x goes into Down Mode first when V_{IN} > V_{OUT} -100mV. It stays in Down Mode until V_{IN} > V_{OUT} +0.35V and then goes automatically into Pass-Through operation. In the Pass-Through operation, output voltage follows input voltage.

The ET82097x exits Pass-Through Mode and goes back to Down Mode when VIN ramps down to 103% of the target output voltage. It stays in Down Mode until input voltage falls to 150mV below the output voltage, returning to normal operation.

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted) (1)

Symbol	Parameters	Min	Max	Unit
V _{IO}	VIN, SW, VOUT, FB, EN	-0.3	6	V
VIO	Voltage range at terminals ⁽²⁾	-0.3		V
	Human Body Model		±4000	V
Vesp	(JEDEC JS-001,All Pins)		14000	V
VESD	Charged Device Model		±1000	V
	(JESD22-C101,All Pins)		±1000	V
ILU	Max Latch up current	±300		mA
ILU	(JESD78E,All Pins)		±300	
TJ	Operating junction temperature	-40	150	°C
T _A	T _A Operating ambient temperature		85	°C
T _{STG}	T _{STG} Storage temperature range		150	°C

Notes:

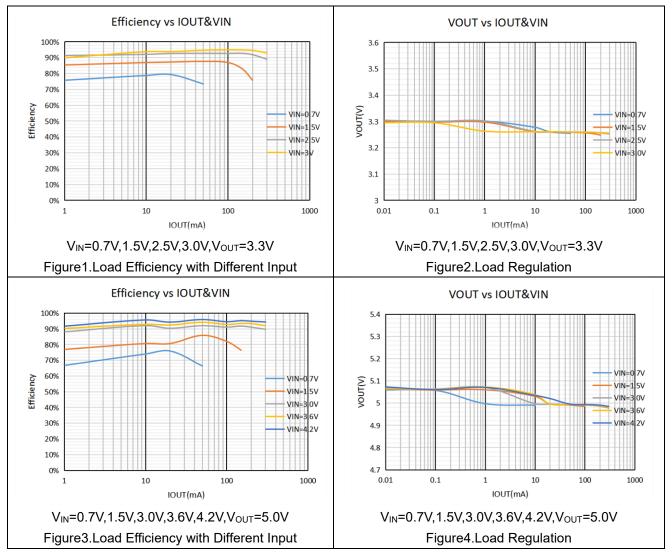
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

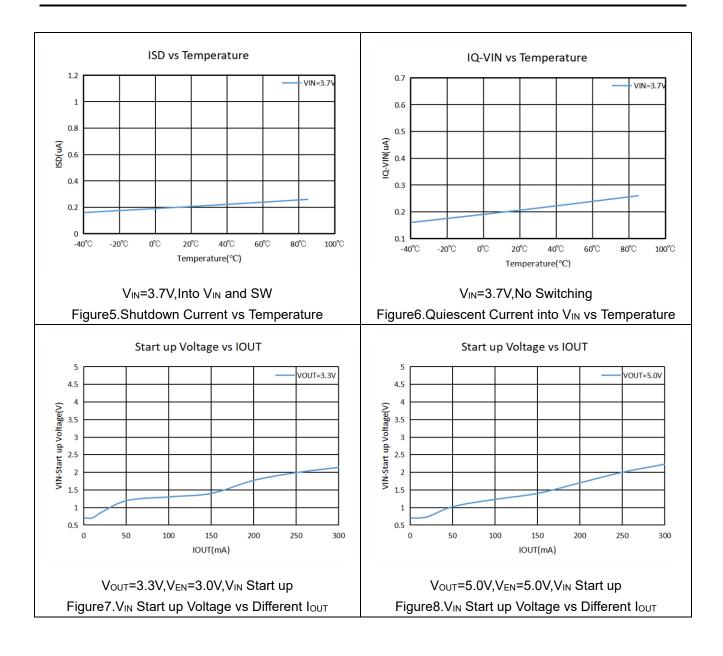
(2) All voltage values are with respect to network ground terminal.

Ε

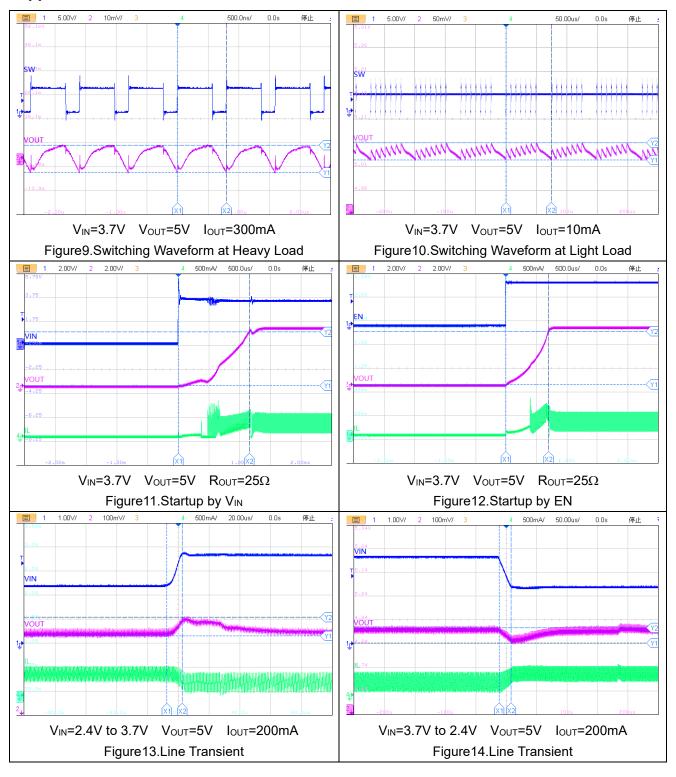
lectrical Characteristics

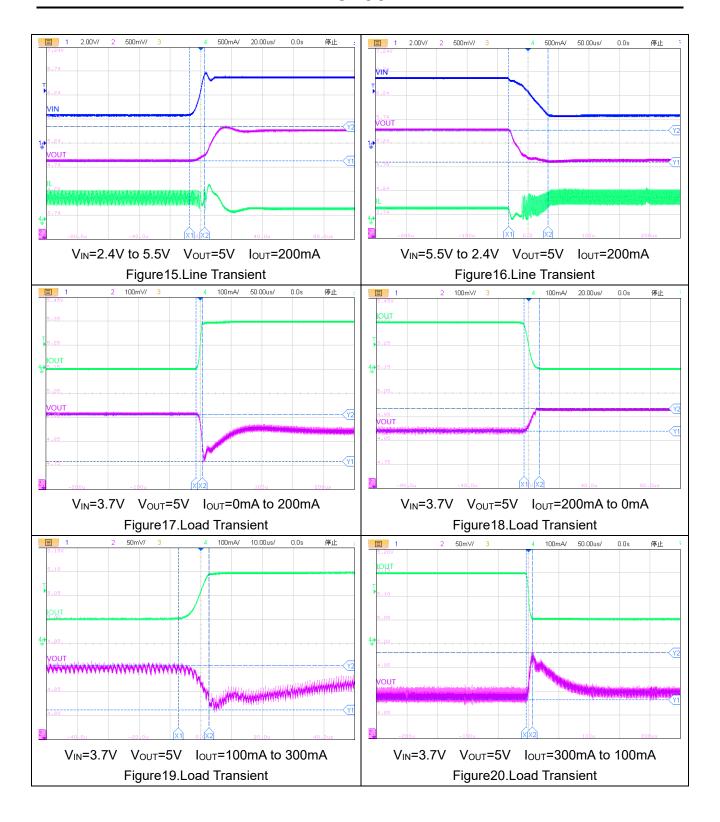
 T_A = -40°C to 85°C and V_{IN} = 0.7V to 5.5V. Typical values are at V_{IN} = 3.7V, T_A = 25°C, unless otherwise noted.

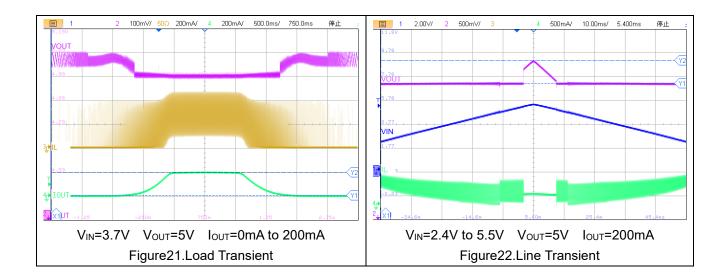

Symbol	Parameters Test Conditions		Min	Тур	Max	Unit
Power Sup	ply					
V _{IN}	Input voltage range		0.7		5.5	V
Vuvlo	Input under voltage lockout threshold	V _{IN} rising		0.6	0.7	V
	Quiescent current into VIN pin	EN = H, no Load, no Switching T _A = -40°C to 85°C		0.25	1.1	uA
lα	Quiescent current into VOUT pin	EN = H, no Load, no Switching, Boost or Down Mode T _A = -40°C to 85°C	3	3.5	4.5	uA
I _{SD}	Shutdown current into VIN pin	EN = L, V_{IN} = 2.7V, V_{OUT} = 0V, T_A = -40°C to 85°C		0.5	1.4	uA
Output						•
	ET00007\/F0	V _{IN} < V _{OUT} , PWM mode	4.9		5.1	V
	ET82097V50	V _{IN} < V _{OUT} , PFM mode		5.15		V
	ET82097V45	V _{IN} < V _{OUT} , PWM mode	4.4	4.5	4.6	V
		V _{IN} < V _{OUT} , PFM mode		4.63		V
	ET82097V36	V _{IN} < V _{OUT} , PWM mode	3.53	3.6	3.67	V
Vout		V _{IN} < V _{OUT} , PFM mode		3.71		V
Accuracy	ET82097	V _{IN} < V _{OUT} , PWM mode	3.23	3.3	3.37	V
		V _{IN} < V _{OUT} , PFM mode		3.4		V
	ET82097V30	V _{IN} < V _{OUT} , PWM mode	2.94	3	3.06	V
		V _{IN} < V _{OUT} , PFM mode		3.1		V
	ET82097V25	V _{IN} < V _{OUT} , PWM mode	2.45	2.5	2.55	V
		V _{IN} < V _{OUT} , PFM mode		2.58		V
V _{OVP}	Output over-voltage protection threshold	V _{OUT} rising	5.6	5.8	6	V
Power Swit	tch					•
R _{DS(on)_} Ls	Low side switch on resistance	ET82097, V _{OUT} = 3.3V		300		mΩ
R _{DS(on)_} Hs	Rectifier on resistance	ET82097,V _{OUT} = 3.3V	350			mΩ
І _{ІН}	Inductor current ripple	ET82097,V _{OUT} = 3.3V	300			mA
Ішм	Current limit threshold	V _{OUT} ≥ 2.5V, boost operation		1		А
I _{SW_LKG}	Leakage into SW Pin (No switching)	V_{SW} = 5.0V, no switch, T_A = -40°C to 85°C			200	nA

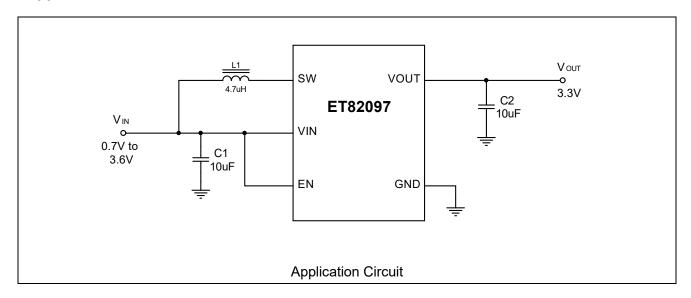

Electrical Characteristics(Continued)

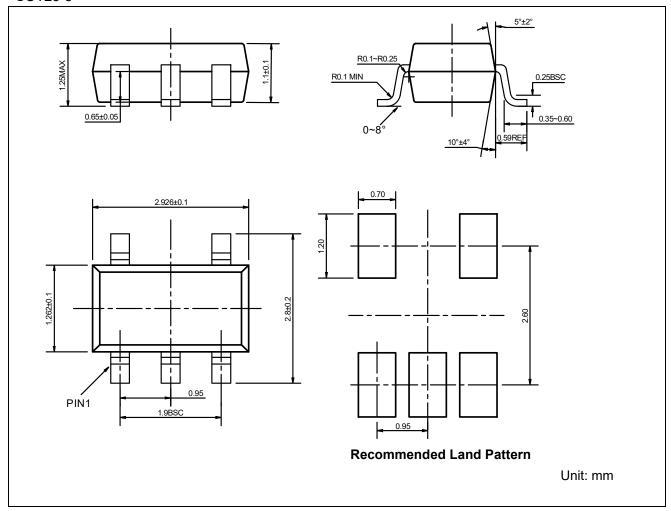
 T_A = -40°C to 85°C and V_{IN} = 0.7V to 5.5V. Typical values are at V_{IN} = 3.7V, T_A = 25°C, unless otherwise noted.


Symbol	Parameters Test Conditions Min Typ		Max	Unit				
Control Lo	Control Logic							
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	EN input low	V _{IN} ≤ 1.5V	0.2×V _{IN}			V		
V _{IL}	voltage threshold	V _{IN} > 1.5V	0.4			V		
V	EN input high	V _{IN} ≤ 1.5V			0.8×V _{IN}	V		
V _{IH}	voltage threshold	V _{IN} > 1.5V			1.2	V		
I _{EN_LKG}		V _{EN} = 5.0V			50	nA		
Тотр	Over temperature			150		°C		
	protection			150		°C		
T _{OTP_HYS}	Over temperature			25		°C		
	hysteresis			25		°C		


Typical Characteristics




Application Curves



Application Circuits

Package Dimension

SOT23-5

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2021-11-26	Initial Version	Xielh	Xielh	Liujy
1.1	2022-3-4	Update Application Circuit	Xielh	Xielh	Liujy
1.2	2022-6-24	Update Typesetting	Shibo	Xielh	Liujy
1.3	2024-2-21	Update AMR	LiuCong	Xielh	Liujy