

USB Type-C Controller with Power Delivery PHY

General Description

The ET7301B is a programmable USB Type-Control IC. It supports the USB Type-C connector application with Configuration Channel (CC) control logic detection and indication functions. This products support a flexible hardware solution to configure DFP/UFP/DRP connection. It can connect to a controller through I2C-bus interface. ET7301B performs USB Type-C detection including attach, detach and orientation. It setup VBUS threshold detection automatically as well as the various charging current levels. ET7301B provide the software flexibility for multiple platform support.

The ET7301B integrates the physical layer of the USB BMC PD (Power Delivery) protocol to allow up to 100W of power and role swap. The BMC PD block enables full support for alternative interfaces of the Type-C specification.

Features

- Dual-Role Functionality with Autonomous DRP Toggle
- Software configurable either as a dedicated host, dedicated device, or dual role. Dedicated devices can operate both on a Type-C receptacle or a Type-C plug with a fixed CC and VCONN channel
- Full Type-C Specification 1.1 support. Configuration Channel (CC)
 - Role Detection and Configuration: DFP/UFP/DRP
 - Type-C USB Port Detection of Attach and Orientation
 - Type-C Current Mode、Audio Adapter Accessory Mode、Debug Accessory Mode
 - Active Cable Detection
- USB Power Delivery(PD) Specification 2.0, Version 1.1 Support
 - Automatic GoodCRC Packet Response
 - Automatic retries of sending a packet if a GoodCRC is not received
 - Automatic soft reset packet sent with retries if needed. Automatic Hard Reset Ordered Set Sent
- Dead Battery Support (SNKMode Support when No Power Applied)
- High Speed I2C Interface
- Supply Voltage: 2.8V to 5.5V
- Low Standby Supply Current: IDD =25uA (Typical)
- Package:WLCSP9(ET7301B),QFN14(ET7301BY)

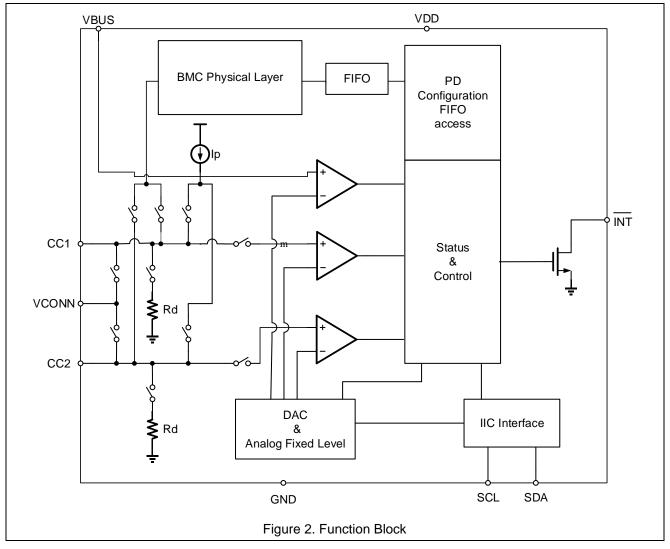
Device Information


Part No.	Package	Size	MSL
ET7301B	WLCSP	1.22mm×1.2mm	Level 1
ET7301BY	QFN14	2.5mm×2.5mm	Level 1

1

Application

- Host, Device, Dual Role Port Applications
- Smart phones, Tablets and Notebooks
- USB Peripheral


Pin Configuration

Pin Function

Pin	No.	Pin	Pin Function
QFN14	CSP	Name	Pin Function
1,14	A1	CC2	Type-C connector configuration channel pin2
2	A2	VBUS	USB VBUS detect terminal .Expected to be an OVP protect input
3,4	A3	VDD	Positive supply
13	B1	VCONN	Regulated power input for USB3.1 full featured cables or other accessories
5	B2	INIT	Interrupt terminal to u-processor indicating register update
3	DZ	ĪNT	(Low active open-drain output)
6	В3	SCL	I ² C communication clock signal
10,11	C1	CC1	Type-C connector configuration channel pin1
8,9	C2	GND	Ground (All ground must connected together in application)
7	C3	SDA	I ² C communication data signal

Block Diagram

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min	Max	Unit
V _{BUS}	VB	US Voltage to GND	-0.3	28	V
V_{DD}	Sup	pply Voltage to GND	-0.3	6	V
Vin		Input Voltage	-0.3	6	V
TJ	Junction Temperature			+150	°C
T _{STG}	Storag	ge Temperature Range	-65	+150	°C
P _D	F	Power Dissipation		400	mW
ESD/Electrostatic Discharge Capability		Human Body Model, JESD22-A114		4	I-\ /
ESD/Electrostatic L	discriarge Capability	Charged Device Model, JESD22-C101		1	kV

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation.

Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. ET7301B does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Condition	Min	Max	Unit
V _{BUS}	VBUS Voltage To GND	GND=0V	4.0	28	V
V_{DD}	Power Supply Voltage To GND	GND=0V	2.8	5.5	V
Vconn	VCONN Supply Voltage To GND	GND=0V	2.7	5.5	V
I _{VCONN}	VCONN Supply Current			560	mA
I _{OH} / I _{OL}	Output Sink/Source Current	V _{BAT} =4.2V		200	mA
TA	Operating Temperature, Free Air		-40	+85	°C

Electrical Characteristic

(T_A=-40 to +85°C, All typical values are at TA=25°C unless otherwise specified.)

Type-C CC Switches

Symbol	Parameter		Min	Тур	Max	Unit
Rsw_ccx	R _{DSON} for SW1_CC1 and SW1_CC2	VCONN to CC1 & CC2		0.4	1.2	Ω
Isw_ccx	Over-Current Protection (OCP) limit at which VCONN switch shuts off over the entire VCONN voltage range. OCPreg=0Fh		600	800	1000	mA
tSoft_Start	Time taken for the VCONN	switch to turn on.	0.8	1.5	2.2	ms
ITOL_CCX	Tolerance of CC Current to VDD of 80uA (default), 180uA (1.5A) and 320 uA (3A)		-8		8	%
D	Device Pull-down Resistance (V _{DD} >3.0 V)		4.59	5.10	5.61	kΩ
RDEVICE	Device Pull-down Resistance (V _{DD} =0V. CCx=2.2V)		4.08	5.10	6.20	kΩ
Z _{OPEN}	CC Resistance for Dis	abled State	126			kΩ

V _{WAKElow}	Wake threshold for CC pin DFP or UFP LOW value. Assumes				0.25		V
V WAKEIOW	bandgap and wake circuit t	urned on ie P\	VR[0]=1		0.23		v
VWAKEhigh	Wake threshold for CC pin DFP o	r UFP HIGH v	alue. Assumes		1.45		V
V WAKENIGN	bandgap and wake circuit t	urned on ie P\	VR[0]=1		1.40		V
			BC=2'b00	0.15	0.20	0.25	V
V _{BC_LVL}	CC Pin Thresholds. Assumes F	PWR=4'h7	BC=2'b01	0.61	0.66	0.70	V
			BC=2'b10	1.56	1.63	1.71	V
V _{BC_LVLh} ys	Hysteresis on the Ra and Rd Co	omparators			20		mV
	Measure block MDAC step size	for each code	in MDAC[5:0]		42		m\/
V	register. MEAS	_VBUS=0			42		mV
V _{MDACstep}	Measure block MDAC step size	for each code	in MDAC[5:0]		420		mV
	register for VBUS measurement. MEAS_VBUS=1				420		IIIV
$V_{VBUSthr}$	VBUS threshold at which I_VBUSOK interrupt is triggered.				4.0		V
v AROStut	Assumes measure block on ie; PWR[2]=1				4.0		V
	When TOGGLE=1, time at w	hich internal v	ersions of				
t _{TOG1}	PU_EN1=PU_EN2=0 and PWD	N1=PDWN2=	1 selected to	30	45	60	ms
	present externally as a SI	NK in the DRP	toggle				
1	When TOGGLE=1, time at w	hich internal v	ersions of				
t _{TOG2}	PU_EN1=1 or PU_EN2=1 and PV			20	30	40	ms
	present externally as a SF	RC in the DRP	toggle				
	Disable time after a full toggle	TOG_SAVE	_PWR2:1=00		0		ms
tois	(trog1+trog2) cycle so as to save	TOG_SAVE	_PWR2:1=01		40		ms
פוטי	power	TOG_SAVE	_PWR2:1=10		80		ms
	TOG_SAVE_PWR2:1=11			160		ms	
Тѕнит	Temp. for Vconn Switch Off			145		°C	
T _{HYS}	Temp. Hysteresis for Vo	onn Switch Tu	rn On		10		°C

Current Consumption

Symbol	Parameter	VDD	Conditions	Min	Тур	Max	Unit
I _{disable}	Disabled	3.0 to	Nothing Attached, No I ² C Transactions.		0.4	5	uA
rdisable	Current	5.5 V	PWR[3:0]=0h		0.4)	u/\
	Standby	3.0 to	Nothing attached, no I2C traffic,				
I _{stdby}	Standby Current	5.5 V	PWR[3:0]=1h,WAKE_EN=0.TOGGLE=		25	40	uA
	Current	5.5 V	1 TOG_SAVE_PWR[2:1]=01h				
	BMC PD	3.0 to	Device Attached, BMC PD Active But				
Ipd_stdby_meas	Standby		Not Sending or Receiving data.		40		uA
	Current	5.5 V	PWR[3:0]=7h				

5

Baseband PD

Symbol	Parameter	Min	Тур	Max	Unit
UI	Unit interval	3.03	3.35	3.7	us
Transmitter					
Routput	TX Output Resistance	21	50	79	Ω
t EndDriveBMC	Time to cease driving the line after the end of the last bit of the Frame			23	us
t HoldLowBMC	Time to Cease Driving the Line after the final High-to-Low Transition	1			us
Vон	Logic High Voltage	1.05		1.2	V
Vol	Logic Low Voltage	0		75	mV
t StartDrive	Time before the start of the first bit of the preamble when the transmitter shall start driving the line	-1		1	us
t _{RISE_TX}	Rise Time	300			ns
t _{FALL_TX}	Fall Time	300			ns
Receiver					
CReceiver	Receiver Capacitance when Driver isn't Turned On		50		pF
ZBmcRx	Receiver Input Impedance	1			МΩ
VSDACstep	BMC Receiver SDAC step size for each code in SDAC[5:0]register		17		mV
VSDAChys	BMC Receiver SDAC hysteresis for each code over the SDAC range (SDAC_HYS=01)		85		mV
t _{RxFilter}	Rx Bandwidth Limiting Filter ⁽²⁾	100			ns
N TransitionCount	Transitions count in time window of 12 μs Min. and 20 μs Max.	3			edges
tactivity	Time from the last BMC edge ⁽¹⁾ to when ACTIVITY bit goes LOWin the STATUS register ⁽²⁾	5		9	us

Notes:

- (1) The last BMC edge includes edge when BMC bus is not driven and thus voltage is the result of pull ups/pull downs to if/when it trips the SDAC receiver threshold to cause another BMC edge.
- (2) Guaranteed by characterization. Not production tested

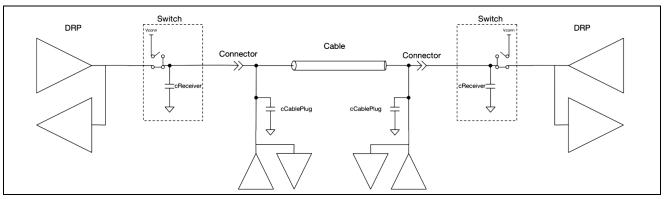
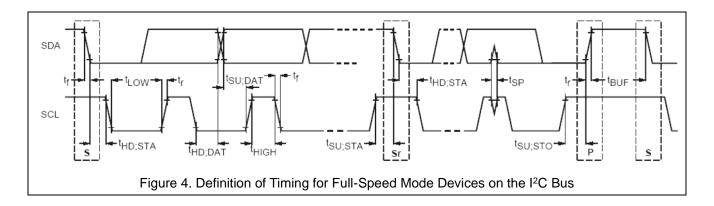


Figure 3. Transmitter Test Load

USB PD Specific Parameters

Symbol	Parameter	Min	Тур	Max	Unit
t HardReset	If a Soft Reset message fails, a Hard Reset is sent			5	ms
HardReset	after t _{HardReset} of CRCReceive Timer expiring			5	1115
	If the ET7301B cannot send a Hard Reset				
t HardResetFinish	within tHardResetFinish time because of a busy line, then			5	ms
	all_HARDFAIL interrupt is triggered				
	This is the value for which the CRCReceiveTimer expires.				
t _{Receive}	The CRCReceiveTimer is started upon the last bit of	0.9		1.1	ms
	the EOP of the transmitted packet				
	Once the CRCReceiveTimer expires, a retry packet has to be				
to .	sentout within t _{Retry} time. This time is hard to separate externally			75	us
t _{Retry}	fromt _{Receive} since they both happen sequentially with no	n sequentially with no		75	us
	visibledifference in the CC output				
	If a GoodCRC packet is not received within tReceive for				
t SoftReset	N_RETRIESthen a Soft Reset packet is			5	ms
	sent within t _{SoftReset} time.				
	From receiving a packet, we have to send a GoodCRC in				
+	Responsewithin tTransmit time. It is measured from the last bit	measured from the last bit		105	110
tTransmit	of the EOP ofthe received packet to the first bit sent of the		195		us
	preamble of theGoodCRC packet				

IO Specifications (VDD=3.0V to 5.5V)(3)

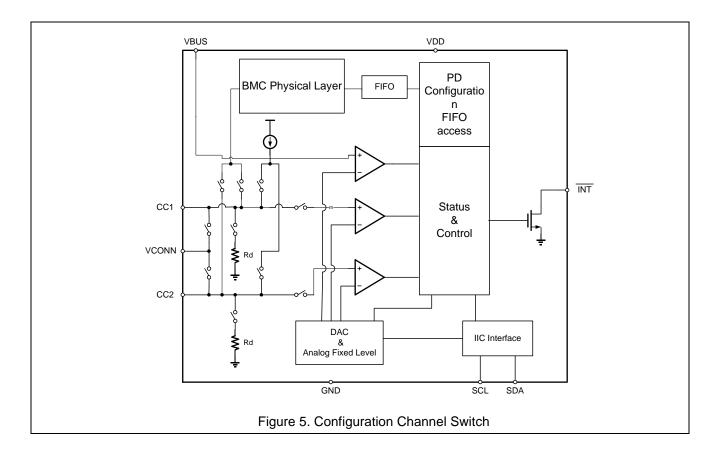

Symbol	Parameter	Min	Тур	Max	Unit
V _{OL_INTN}	INT_N Output Low Voltage (IoL=4mA)			0.4	V
T _{INT_Mask}	Time from global interrupt mask bit cleared to INT_N goes LOW	50			us
V _{ILI2C}	Low-Level Input Voltage			0.51	V
V _{IHI2C}	High-Level Input Voltage	1.32			V
V _{HYS}	Hysteresis of Schmitt Trigger Inputs	0.09			V
I _{I2C}	Input Current of SDA and SCL Pins (Input Voltage 0.26V to 2V)	-10		10	uA
Іссті2С	VDD Current when SDA orSCL is HIGH (Input Voltage 1.8V)	-10		10	uA
Volsda	SDA Open-Drain Low-Level Output Voltage (IoL=3mA)	0		0.3	V
Iolsda	SDA Open-Drain Low-Level Output Current(Volsda=0.4V)	20			mΑ
Сı	Capacitance for Each I/O Pin		5		pF

Note:

(3) The external I²C pull-up voltage must be between 1.71V and VDD.

I²C Specifications Fast Mode I²C Specification (Fast Mode)

Symbol	Parameter	Min	Max	Unit
f _{SCL}	I ² C SCL Clock Frequency	0	1000	kHz
thd;sta	Hold Time (Repeated) START Condition	0.26		us
t_{LOW}	Low Period of I ² C SCL Clock	0.5		us
tніgн	High Period of I ² C SCL Clock	0.26		us
tsu;sta	Set-up Time for Repeated START Condition	0.26		us
t _{HD;DAT}	Data Hold Time	0		us
tsu;dat	Data Set-up Time ⁽¹⁾	50		ns
t _r	Rise Time of I ² C_SDA and I ² C_SCL Signals ⁽²⁾		120	ns
t _f	Fall Time of I ² C_SDA and I ² C_SCL Signals ⁽²⁾	6	120	ns
tsu;stq	Set-up Time for STOP Condition	0.26		us
t _{BUF}	Bus-Free Time between STOP and START Conditions	0.5		us
tsp	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns
Сь	Capacitive Load for each Bus Line		550	рF



Function Description

Configuration Channel Switch

The ET7301B integrates the control and detection functionality required to implement a USB Type-C host, device or dual-role port including: CC Pull-Down(RD), Pull-Up (Ip), VCONN Power Switch, USB BMC Power Delivery Physical Layer and CCx Threshold Comparators. Each CCx pin contains a flexible switch matrix that allows the host software to control what type of Type-C port is implemented. The switches are shown in Figure 5.

8

Type-C Detection

The ET7301B implements multiple comparators and a programmable DAC that can be used by software to determine the state of the CC and VBUS pins. This status information provides the software all the information required to determine attach, detach and charging current capabilities based on the specific Type-C port to which the ET7301B has been configured.

The ET7301B has three fixed threshold comparators that match the USB Type-C specification for the threecharging current levels that can be detected by a Type-C device. These comparators automatically cause a BC_LVL interrupt to occur when there is a change of state. In addition to the fixed threshold comparators, the host software can use the 6-bit DAC to determine the state of the CC lines more accurately.

The ET7301B also has a fixed comparator that monitors if VBUS has reached a valid threshold or not. The DAC can be used to measure VBUS up to 26.88V which allows the software to confirm that changes to the VBUS line have occurred as expected based on various communication methods to change the charging level.

Detection through Autonomous Device Toggle

The ET7301B has the capability to do autonomous DRP toggle. In autonomous toggle the ET7301B internally controls the PDWN1, PDWN2, PU_EN1 and PU_EN2, MEAS_CC1 and MEAS_CC2 and implements a fixed DRP toggle between presenting as a SRC and presenting as a SNK. Alternately, it can present as a SRC or SNK only and poll CC1 and CC2 continuously.

Autonomous Device Toggle register setup through I²C.

Registers/Bits	Value
TOGGLE	1
HOST_CUR0	1
HOST_CUR1	0
MEAS_VBUS	0
VCONN_CC1	0
VCONN_CC2	0
Mask Register	0xFE
Maska Register	0xBF
Maskb Register(Except I_TOGDONE and I_BC_LVL Interrupt)	0x01
PWR[3:0]	0x07

Toggle Functionality

When TOGGLE bit (Control2 register) is set the ET7301B implements a fixed DRP toggle between presenting as a SRC and as a SNK. It can also be configured to present as a SRC only or SNK only and poll CC1 and CC2 continuously. This operation is turned on with TOGGLE=1 and the processor should initially. Write HOST_CUR1=0,

HOST_CUR0=1(fordefaultcurrent) ,VCONN_CC1=VCONN_CC2=0,MaskRegister=0xFE,Maskaregister=0xB F,andMaskb register=0x01, and PWR=0x07. It returns I_TOGDONE and TOGSS1/2. The processor should also read the interrupt register to clear them prior tosetting the TOGGLE bit.

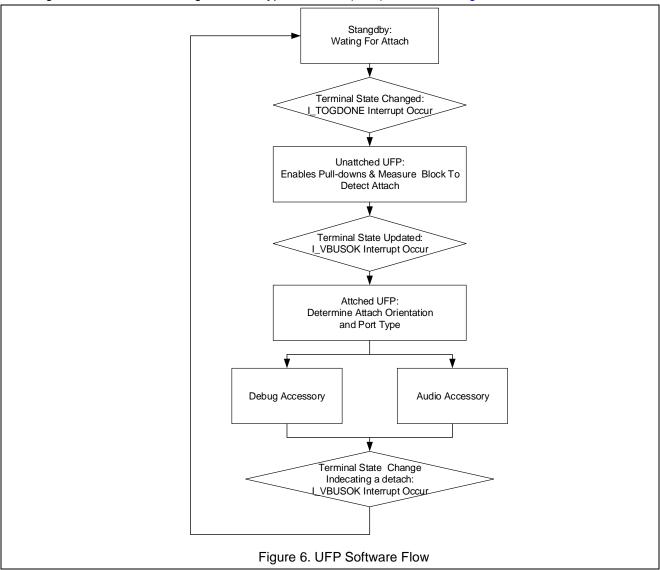
Manual Device Toggle

The ET7301B has the capability to do manual DRP toggle. In manual toggle the ET7301Bis configurable by the processor software by I2C and setting TOGGLE=0.

Initial Attach Detection

The ET7301B implements the Type-C Disabled state which removes all termination from the CC pins. In this state, the ET7301B monitors the CC pins for any activity which indicates that either a host or a device is attempting to attach. When the ET7301B detects this activity, it interrupts the host software through the WAKE interrupt. The host software can then enable the desired termination based on the required port type and validate the attach per the Type-C specification.

Manual Device Detection and Configuration (UFP)


A Type-C device must monitor VBUS to determine if it is attached or detached. The ET7301B provides this information through the VBUSOK interrupt. After the Type-C device knows that a Type-C host has been attached, it needs to determine what type of termination is applied to each CC pin. The software determines if an Ra or Rd termination is present based on the BC_LVL and COMP interrupt and status bits.

Additionally, for Rd terminations, the software can further determine what charging current is allowed by the Type-C host by reading the BC_LVL status bits. This is summarized in Table 1.

Table 1. Device Interrupt Summary

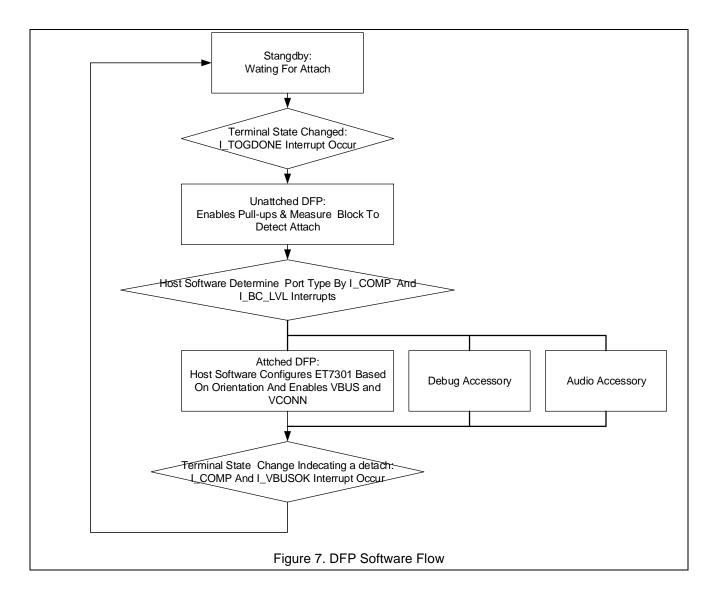
Status Type		Interru	Magning		
Status Type	BC_LVL[1:0]	COMP	COMP Setting	VBUSOK	Meaning
	2'b00	NA	NA	1	vRA
CC	2'b01	NA	NA	1	vRd-Connect and vRd-USB
Detection	2'b10	NA	NA	1	vRd-Connect and vRd-1.5
Detection	2'b11	0	6'b11_0100	1	uPd Compact and uPd 2.0
			(2.05 V)		vRd-Connect and vRd-3.0
Attach	NA	NA	NA	1	Host Attached, VBUS Valid
Detach	NA	NA	NA	0	Host Detached, VBUS Invalid

The high level software flow diagram for a Type-C device (UFP) is shown in Figure 6.

Manual Host Detection and Configuration (DFP)

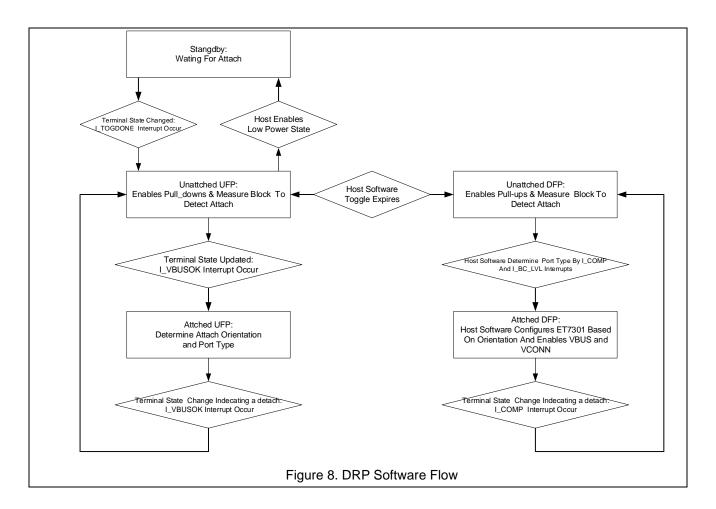
When the ET7301B is configured as a Type-C host, the software can use the status of the comparators and DAC to determine when a Type-C device has been attached or detached and what termination type has

been attached to each CC pin.


The ET7301B allows the host software to change the charging current capabilities of the port through the HOST_CUR control bits. If the HOST_CUR bits are changed prior to attach, the ET7301B will automatically indicate the programmed current capability when a device is attached. If the current capabilities are changed after a device is attached, the ET7301B will immediately change the CC line to the programmed capability.

The Type-C specification outlines different attach and detach thresholds for a Type-C host that are based on how much current is supplied to each CC pin. Based on the programmed HOST_CUR setting, the software adjusts the DAC comparator threshold to match the Type-C specification requirements. The BC_LVL comparators can also be used as part of the Ra detection flow. This is summarized in Table 2.

Table 2. Host Interrupt Summary


Termination	HOST_CUR[1:0]		Attach/Detac		
Termination	HOSI_COK[1.0]	BC_LVL[1:0]	COMP	COMP Setting	h
	2'b01	2'b00	NA	NA	
Ra	2'b10	2'b01	0	6'b00_1000 (0.4 V)	NA
	2'b11	2'b10	0	6'b01_0010 (0.8 V)	
	2'b01,2'b10	NA	0	6'b10_0100 (1.6 V)	Attach
Rd	2001,2010	NA	1	6'b10_0100 (1.6 V)	Detach
	2'b11	NA	0	6'b11_1101 (2.6 V)	Attach
	2011	NA	1	6'b11_1101 (2.6 V)	Detach

The high level software flow diagram for a Type-C Host (DFP) is shown below in Figure 7.

Manual Dual-Role Detection and Configuration (DRP)

The Type-C specification allows ports to be both a device or a host depending on what type of port has attached. This functionality is similar to USB OTG ports with the current USB connectors and is called a dual-role port. The ET7301B can be used to implement a dual-role port. A Type-C dual role port toggles between presenting as a Type-C device and a Type-C host. The host software controls the toggle time and configuration of the ET7301B in each state as shown in Figure 8.

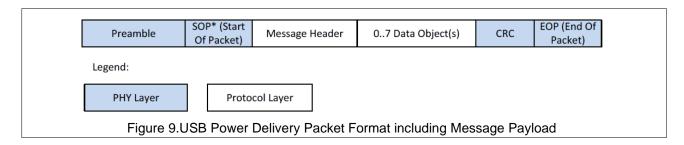
Power Level Determination

The Type-C specification outlines the order of precedence for power level determination which covers power levels from basic USB2.0 levels to the highest levels of USB PD. The host software is expected to follow the USB Type-C specification for charging current priority based on feedback from the ET7301B detection, external BC1.2 detection and any USB Power Delivery communication.

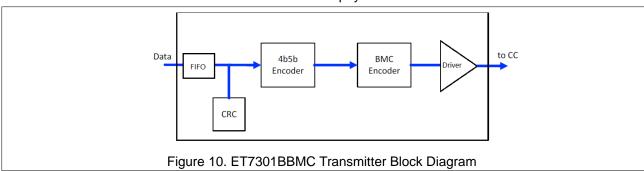
The ET7301B does not integrate BC1.2 charger detection which is assumed available in the USB transceiver or USB charger in the system.

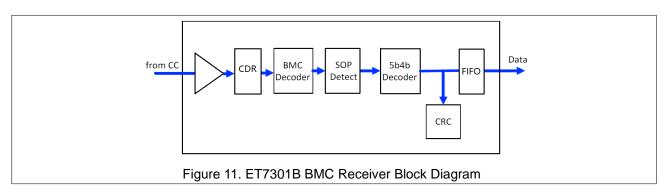
Power Up, Initialization and Reset

When power is first applied through VDD, the ET7301B is reset and registers are initialized to the default values shown in the register map. ET7301B can be reset through software by programming the SW_RES bit in the RESET register.


To properly configure the device in low power operation, place a 0.2uF cap on each CC pin and set the registers to defaultby programming the SW_RES bit.

BMC Power Delivery


The Type-C connector allows USB Power Delivery (PD) to be communicated over the connected CC pin between two ports. The communication method is the BMC Power Delivery protocol and is used for many different reasons with the Type-C connector. Possible uses are outlined below.


- Negotiating and controlling charging power levels
- Alternative Interfaces such as MHL, Display Port
- Vendor specific interfaces for use with custom docks or accessories
- Role swap for dual-role ports that want to switch who is the host or device
- Communication with USB3.1 full featured cables

All Messages shall be composed of a Message Header and a variable length (including zero) data portion. A Message either originates in the Protocol Layer and is passed to the Physical Layer, or it is received by the Physical Layer and is passed to the Protocol Layer.(Please see the Power Delivery Specification)

The ET7301B integrates a thin BMC PD client which includes the BMC physical layer and packet FIFOs (48 bytes for transmit and 80 bytes for receive) which allows packets to be sent and received by the host software through I²C accesses. The ET7301B allows host software to implement all features of USB BMC PD through writes and reads of the FIFO and control of the ET7301B physical interface.

The ET7301B uses tokens to control the transmission of BMC PD packets. These tokens are written to the transmit FIFO and control how the packet is transmitted on the CC pin. The tokens are designed to be flexible and support all aspects of the USB PD specification. The ET7301B additionally enables control of the BMC transmitter through tokens. The transmitter can be enabled or disabled by specific token writes which allow

faster packet processing by burst writing the FIFO with all the information required to transmit a packet.

The ET7301B receiver stores the received data and the received CRC in the receive FIFO when a valid packet is received on the CC pin. The BMC receiver automatically enables the internal oscillator , when activity is sensed on the CC pin , and load the FIFO when a packet is received. The I_ACTIVITY and I_CRC_CHK interrupts alert the host software that a valid packet was received.

PD Automatic Sending Retries

If GoodCRC packet is not received and AUTO_RETRY is set, then a retry of the same message that was in the TxFIFO written by the processor is executed within tRetry and that is repeated for N_RETRY times.

PD Send Soft Reset

If the correct GoodCRC packet is still not received for all retries then I_RETRYFAIL interrupt is triggered and if AUTO_SOFT_RESET is set, then a Soft Reset packet is created (MessageID is set to 0 and the processor upon servicing I_RETRYFAIL would set the true MessageIDCounter to 0. If this Soft Reset is sent successfully where a GoodCRC control packet is received with a MessageID=0 then I_TXSENT interrupt occurs.If no power applied to VDD, then the SRC can recognize the ET7301B as a SNK.

PD Automatic Receive GoodCRC

The power delivery packets require a GoodCRC acknowledge packet to be sent for each received packet where the calculated CRC is the correct value. This calculation is done by the ET7301B and triggers the I_CRC_CHK interrupt if the CRC is good. If the AUTO_CRC (Switches1 register bit) is set and AUTO_PRE=0, then the ET7301B will automatically send the GoodCRC control packet in response to alleviate the local processor from responding quickly to the received packet. If GoodCRC is required for anything beyond SOP, then enable SOP*.

PD Send

The ET7301B implements part of the PD protocol layer for sending packets in an autonomous fashion. If not, this Soft Reset packet is retried N_RETRIES times (MessageID is always 0 for all retries) if a GoodCRC acknowledge packet is not received with CRCReceiveTimer expiring (tReceive of 1.1 ms max). If all retries fail, then I SOFTFAIL interrupt is triggered.

PD Send Hard Reset

If all retries of the soft reset packet fail and if AUTO_HARD_RESET is set, then a hard reset ordered set is sent by loading up the TxFIFO with RESET1, RESET1, RESET1, RESET2 and sending a hard reset. Note only one hard reset is sent since the typical retry mechanism doesn't apply. The processor's policy engine firmware is responsible for retrying the hard reset is it doesn't receive the required response.

Software Model

Port software interacts with the port chip in two primary ways:

- I²C Registers
- 8 bit data tokens sent to or received from the FIFOregister.
- All reserved bits written in the TxFIFO should be 0 and all reserved bit read from the RxFIFO should
- be ignored.

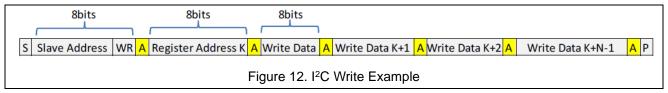
Transmit Data Tokens

Transmit data tokens provide in-sequence transmit control and data for the transmit logic. Note that the token

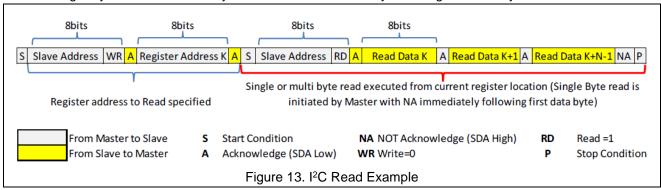
codes, and their equivalent USB PD K-Code are not the same. Tokens are read one at a time when they reach the end of the TX FIFO. I.e., the specified token action is performed before the next token is read from the TX FIFO.

The tokens are defined as follows:

Code	Name	Bytes	Description
101xxxx1 (0xA1)	TXON	1	Alternative method for starting the transmitter with the TX-START bit. This is not a token written to the TxFIFO but a command much like TX_START but it is more convenient to write it while writing to the TxFIFO in one contiguous write operation. It is preferred that the TxFIFO is first written with data and then TXON or TX_START is executed. It is expected that A1h will be written for TXON not any other bits where x is non-zero such as B1h, BFh, etc
0x12	SOP1	1	When reaching the end of the FIFO causes a Sync-1 symbol to be transmitted.
0x13	SOP2	1	When reaching the end of the FIFO causes a Sync-2 symbol to betransmitted.
0x1B	SOP3	1	When reaching the end of the FIFO causes a Sync-3 symbol to betransmitted.
0x15	RESET1	1	When reaching the end of the FIFO causes a RST-1 symbol to betransmitted.
0x16	RESET2	1	When reaching the end of the FIFO causes a RST-2 symbol to betransmitted.
0x80	PACKSYM	1+N	This data token must be immediately followed by a sequence of N packed data bytes. This token is defined by the 3 MSB"s being set to 3'b100. The 5 LSB's are the number of packed bytes being sent. Note: N cannot be less than 2 since the minimum control packet has a header that is 2 bytes and N cannot be greater than 30 since the maximum data packet has 30 bytes (2 byte header +7 data objects each having 4 bytes) Packed data bytes have two 4 bit data fields. The 4 LSB"s are sent first, after 4b5b conversion etc in the chip.
0xFF	JAM_CRC	1	Causes the CRC, calculated by the hardware, to be inserted into the transmit stream when this token reaches the end of the TX FIFO.
0x14	EOP	1	Causes an EOP symbol to be sent when this token reaches the end of the TX FIFO.
0xFE	TXOFF	1	Turn off the transmit driver. Typically the next symbol after EOP


Receive Data Tokens

Receive data tokens provide in-sequence receive control and data for the receive logic. The RxFIFO can absorb as many packets as the number of bytes in the RxFIFO (80 bytes). The tokens are defined as follows:


Code	Name	Bytes	Description		
111h bbbb	SOP	1	First byte of a received packet to indicate that the packet is an SOP packet		
111b_bbbb	30F	ı	("b" is undefined and can be any bit)		
110b bbbb	SOB1	1	First byte of a received packet to indicate that the packet is an SOP'		
110b_bbbb	SOP1 1		packet and occurs only if ENSOP1=1 ("b" is undefined and can be any bit)		
			First byte of a received packet to indicate that the packet is an		
101b_bbbb			SOP"packetand occurs only if ENSOP2=1 ("b" is undefined and can be		
			any bit)		
			First byte of a received packet to indicate that the packet is an		
100b_bbbb	SOP1DB	1	SOP'_DEBUG packet and occurs only if ENSOP1DB=1 ("b" is undefined		
			and can be any bit)		
			First byte of a received packet to indicate that the packet is an		
011b_bbbb	SOP2DB	1	SOP"_DEBUG packet and occurs only if ENSOP2DB=1 ("b" is undefined		
			and can be any bit)		
010b_bbbb	Do Not		Those can be used in future versions of this device and should not be		
001b_bbbb		1	These can be used in future versions of this device and should not be		
000b_bbbb	Use		relied on to be any special value. ("b" is undefined and can be any bit)		

I²C Interface

The ET7301B includes a full I²C slave controller. The I²C slave fully complies with the I2C specification Version 6 requirements. This block is designed for fast mode. Examples of an I2C write and read sequence are shown in Figure 12 and Figure 13 respectively.

Note: Single Byte read is initiated by Master with P immediately following first data byte.

Note: If Register is not specified Master will begin read from current register. In this case only sequence showing in Red bracket is needed

Table 3. I2C Slave Address

Name	Size (Bits)	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Slave Address	8	0	1	0	0	0	1	0	R/W

18

Register Definitions(*)

Address	Register Name	Туре	Rst Val	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x01	Device ID	R	8x		Version	ID[3:0]		Revision ID[3:0]			
0x02	Switches0	R/W	03	PU_EN2	PU_EN1	VCONN_CC2	VCONN_QC1	MEAS_CC2	MEAS_CC1	PDWN2	PDWN1
0x03	Switches1	R/W	20	POWERROLE	SPECRREV1	SPECREV0	DATAROLE		AUTO_CRC	TXCC2	TXCC1
0x04	Measure	R/W	31		MEAS_VBUS	MDAC5	MDAC4	MDAC3	MDAC2	MDAC1	MDACO
0x05	Slice	R/W	60	SDAC_HYS1	SDAC_HYS2	SDAC5	SDAC4	SDAC3	SDAC2	SDAC1	SDAC0
0x06	Control0	R/W/C	24		TX_FLUSH	I NT_MASK		HOST_CUR1	HOST_CURO	AUTO_PRE	TX_START
0x07	Control1	R/W/C	00		ENSOP2DB	ENSOP1DB	BIST_MODE2		RX_FLUSH	ENSOP2	ENSOP1
0x08	Control2	R/W	02	TOPG_SAVE_ PWR2	TOPG_SAVE_ PWR2	TOG_RD_ONLY		WAKE_EN	MOD	E[1:0]	TOGGLE
0x09	Control3	R/W	06		SENDHARD RESET		AUTOHARD RESET	AUTOSOFT RESET	N_RETF	RIES[1:0]	AUTO_RETRY
0x0A	Mask1	R/W	00	M_VBUSOK	M_ACTIVITY	M_COMP_CHNG	M_CRC_CHK	M_ALERT	M_WAKE	M_COLLISIO N	M_BC_LVL
0x0B	Power	R/W	01					PWR3	PWR2	PWR1	PWR0
0x0C	Reset	W/C	00							PD_RESET	SW_RES
0x0D	OCPreg	R/W	0F					OCP_RANGE	OCP_CUR2	OCP_CUR1	OCP_CUR0
0x0E	Maska	R/W	00	M_OCP_TEMP	M_TOGDONE	M_SOFTFAIL	M_RETRYFAIL	M_HARDSENT	M_TXSENT	M_SOFTRST	M_HARDRST
0x0F	Maskb	R/W	00								M_GCRCSENT
0x3C	Status 0a	R	00			SOFTFAIL	RETRYFAIL	POWER3	POWER2	SOFTRST	HARDRST
0x3D	Status 1a	R	00			TOGSS3	TOGSS2	TOGSS1	RXSOP2DB	RXSOP1DB	RXSOP
0x3E	Interrupta	R/C	00	I_OCP_TEMP	I_TOGDONE	I_SOFTFAIL	I_RETRYFAIL	I_HARDSENT	I_TXSENT	I_SOFTRST	I_HARDRST
0x3F	Interrupt	R/C	00								I_GCRCSENT
0x40	Status0	R	00	VBUSOK	ACTIVITY	COMP	CRC_CHK	ALERT	WAKE	BC_LVL1	BC_LVL0
0x41	Status1	R	28	RXSOP2	RXSOP1	RX_EMPTY	RX_FULL	TX_EMPTY	TX_FULL	OVRTEMP	OCP
0x42	Interrupt	R/C	00	I_VBUSOK	I_ ACTIVITY	I_COMP_CHNG	I_ CRC_CHK	I_ ALERT	I_WAKE	I_COLLISION	I_BC_LVL
0x43	FIFOs	R/W (11)	00	Write to TX FIFO or read from RX FIFO repeatedly without address auto increment							

Type C Bits USB PD Bits General Bits

(11)

Note*:

(1) Do not use registers that are blank.

(2) Values read from undefined register bits are not defined and invalid. Do not write to undefined registers.

(3) FIFO register is serially read/written without auto address increment.

Address: 01h-- **Device ID**Reset Value: 0x1000_00XX

Type: Read

Bit	Name	Description
7:4	Version ID	Device version ID
3:0	Revision ID	Revision History of each version

Address: 02h-- **Switches0** Reset Value: 0x0000_0011

Type: Read/write

Bit	Name	Description
7	PU EN2	1: Enable host pull up current to CC2 pin based on
_ ′	PU_EINZ	Control0registerHOST_CUR[1:0] setting
6	DII ENI	1: Enable host pull up current to CC1 pin based on Control0
0	6 PU_EN1	registerHOST_CUR[1 :0] setting
5	VCONN _CC2	1: Enable the VCONN pin to CC2 pin switch
4	VCONN - CC1	1: Enable the VCONN pin to CC1 pin switch
2	3 MEAS_CC2	1: Connect the measure block to CC2 pin to monitor or measure thevoltage
3		on CC2 pin. Note, PWR=0x07 for proper operation
2	2 MEAS_CC1	1: Connect the measure block to CC1 pin to monitor or measure thevoltage
		on CC1 pin. Note, PWR=0x07 for proper operation
1	PDWN2	1: Enable Device pull down on CC2 pin
0	PDWN1	1: Enable Device pull down on CC1 pin

Address: 03h—**Switches1**Reset Value: 0x0010_0000

Type: Read/write

Bit	Name	Description
		Bit used for constructing the GoodCRC acknowledge packet. Thisbit corresponds
7	POWERROLE	tothe Port Power Role bit in the message header ifan SOP packet is received
'	/ POWERROLE	1: Source if SOP
		0: Sink if SOP
	6:5 SPECREV[1:0]	Bit used for constructing the GoodCRC acknowledge packet. Thesebits
		correspond to the Specification Revision bits in the messageheader
6:5		00: Revision 1.0
		01: Revision 2.0
		10, 11: Do Not Use
1	4 DATAROLE	Bit used for constructing the GoodCRC acknowledge packet. Thisbit corresponds
4	DATAROLE	to the Port Data Role bit in the message header.For SOP:

		1: SRC
		0: SNK
3	Reserved	Do Not Use
2	AUTO_CRC	Starts the transmitter automatically when a message with a goodCRC is received and automatically sends a GoodCRC acknowledgepacket back to the relevant SOP* O: Feature disabled
1	TXCC2	1: Enable BMC transmit driver on CC2 pin
0	TXCC1	1: Enable BMC transmit driver on CC1 pin

Address: 04h--**Measure**Reset Value: 0x0011_0001

Type: Read/Write

6 MEAS_VBUS Switches0 register to be 0: MDAC/comparator m Measure Block DAC da dependent on Meas_VE values from 00_0000 to	3it	Description					
6 MEAS_VBUS Switches0 register to be 0: MDAC/comparator m Measure Block DAC da dependent on Meas_VE values from 00_0000 to MDAC[5:0] MEAS 00_0000	7	Do Not Use					
5:0 MDAC[5:0] dependent on Meas_VE values from 00_0000 to MDAC[5:0] MEAS 00_0000	6	1: Measure VBUS with the MDAC/comparator. This requires MEAS_CCx bits in Switches0 register to be 0 0: MDAC/comparator measurement is controlled by MEAS_CCx bits					
11_1110	5:0	on ton Me om 00_0 5:0] 000 001 000 011	MDAC[5:0]	leas_VBUS register	setting. Examples are s	•	

Address: 05h--**Slice**Reset Value: 0x0110_0000
Type: Read/Write

Bit	Name	Description				
	7:6 SDAC_HYS[1:0]	Adds hysteresis where there are now two thresholds, the lowerthreshold which is				
		always the value programmed bySDAC[5:0] and the higher threshold that is:				
7:6		11: 255 mV hysteresis: higher threshold = (SDAC value + 20hex)				
7.0		10 :170 mV hysteresis: higher threshold = (SDAC value + 0Ahex)				
		01 :85 mV hysteresis: higher threshold = (SDAC value + 05hex)				
		00 : No hysteresis: higher threshold = SDAC value				
5:0	SDAC(E:0)	BMC Slicer DAC data input. Allows for a programmable thresholdso as to meet				
5.0	SDAC[5:0]	the BMC receive mask under all noise conditions				

Address: 06h--Control0
Reset Value: 0x0010_0100
Type: (See Column Below)

Bit	Name	R/W/C	Description
7	Reserved	N/A	Do Not Use
6	TX_FLUSH	W/C	1: Self clearing bit to flush the content of the transmit FIFO
5	INT MACK	R/W	1: Mask all interrupts
<u> </u>	INT_MASK	IX/VV	0: Interrupts to host are enabled
4	Reserved	N/A	Do Not Use
			Controls the host pull-up current enabled by PU_EN[2:1]
		R/W	bits in the Switches0 register:
3:2	HOST_CUR[1:0]		00: Current disabled
3.2			01: 80 uA - Default USB power
			10: 180 uA - Medium Current Mode: 1.5A
			11: 330 uA - High Current Mode: 3A
		R/W	1: Starts the transmitter automatically when a message with a
			goodCRC is received. This allows the software to take as much as300
1	AUTO_PRE		μS to respond after the I_CRC_CHK interrupt is received.Before
'	AUTO_PRE		starting the transmitter, an internal timer waits forapproximately 170 µS
			beforeexecuting the transmit start andpreamble
			0: Feature disabled
			1: Start transmitter using the data in the transmit FIFO. Preamble is
0	TX_START	W/C	started first. During the preamble period the transmit data can start to
			be written to the transmit FIFO. Self clearing

Address: 07h—Control1
Reset Value: 0x0000_0000
Type: (See Column Below)

Bit	Name	R/W/C	Description
7	Reserved	N/A	Do Not Use
6	ENSOP2DB	DAM	1: Enable SOP"_DEBUG (SOP double prime debug) packets
0	ENSOP2DB	R/W	0: Ignore SOP"_DEBUG (SOP double prime debug) packets
5	ENSOD1DD	R/W	1: Enable SOP'_DEBUG (SOP prime debug) packets
5	ENSOP1DB		0: Ignore SOP'_DEBUG (SOP prime debug) packets
4	BIST_MODE2	R/W	1: Sent BIST Mode 01s pattern for testing
3	Reserved	N/A	Do Not Use
2	RX_FLLUSH	R/C	1: Self clearing bit to flush the content of the receive FIFO.
1	ENSOP2	R/W	1: Enable SOP"(SOP double prime) packets
			0: Ignore SOP"(SOP double prime) packets
0	ENSOD1	R/W	1: Enable SOP'(SOP prime) packets
0	ENSOP1	FK/VV	0: Ignore SOP'(SOP prime) packets

Address: 08h—Control2
Reset Value: Ox0000_0010
Type: (See Column Below)

Bit	Name	R/W/C	Description
	TOG_SAVE_PWR2		00: Don't go into the DISABLE state after one cycle oftoggle
7:6		D/M	01: Wait between toggle cycles for tDIStime of 40 ms
7.0	TOG_SAVE_PWR1	R/W	10: Wait between toggle cycles for tDIS time of 80 ms
			11: Wait between toggle cycles for tDIS time of 160 ms
			1: When TOGGLE=1 only Rd values will cause the TOGGLEstate
5	TOC DD ONLY	R/W	machine to stop toggling and trigger the I_TOGGLEinterrupt
5	TOG_RD_ONLY		0: When TOGGLE=1, Rd and Ra values will cause theTOGGLE
			state machine to stop toggling
4	Reserved	N/A	Do Not Use
3	WAKE_EN	R/W	1: Enable Wake Detection functionality if the power state iscorrect
3			0: Disable Wake Detection functionality
	MODE	R/W	11: Enable SRC polling functionality if TOGGLE=1
2:1			10: Enable SNK polling functionality if TOGGLE=1
2.1	MODE		01: Enable DRP polling functionality if TOGGLE=1
			00: Do Not Use
0	TOGGLE	R/W	1: Enable DRP, SNK or SRC Toggle autonomous functionality
U	TOGGLE		0: Disable DRP, SNK and SRC Toggle functionality

Address: 09h—Control3
Reset Value: Ox0000_0110
Type: (See Column Below)

Bit	Name	R/W/C	Description
7	Reserved	N/A	Do Not Use
6	OFNE HARR RECET	\\\(\O	1: Send a hard reset packet (highest priority)
0	SEND_HARD_RESET	W/C	0: Don't send a soft reset packet
5	Reserved	N/A	Do Not Use
4	ALITO LIADDDEOET	R/W	1: Enable automatic hard reset packet if soft reset fail
4	AUTO_HARDRESET		0: Disable automatic hard reset packet if soft reset fail
3	ALITO COETDECET	R/W	1: Enable automatic soft reset packet if retries fail
3	AUTO_SOFTRESET		0: Disable automatic soft reset packet if retries fail
	N_RETRIES[1:0]	R/W	11: Three retries of packet (four total packets sent)
2:1			10: Two retries of packet (three total packets sent)
2.1			01: One retry of packet (two total packets sent)
			00: No retries (similar to disabling auto retry)
0	AUTO RETRY	R/W	1: Enable automatic packet retries if GoodCRC is notreceived
U	AUTO_RETRI		0: Disable automatic packet retries if GoodCRC is notreceived

Address: 0Ah--**Mask0** Reset Value: 0x0000_0000

Type: Read/Write

Bit	Name	Description
7	M VDUCOK	1: Mask I_VBUSOK interrupt bit
/	M_VBUSOK	0: Do not mask
6	M_ACTIVITY	1: Mask interrupt for a transition in CC bus activity
0	W_ACTIVITY	0: Do not mask
		1: Mask I_COMP_CHNG interrupt for change is the value ofCOMP, the
5	M_COMP _CHNG	measure comparator
		0: Do not mask
4	M_CRC_CHK	1: Mask interrupt from CRC_CHK bit
4		0: Do not mask
3	M_ALERT	1: Mask the I_ALERT interrupt bit
3		0: Do not mask
2	M_WAKE	1: Mask I_WAKE interrupt bit
		0: Do not mask
1	M_COLLISION	1: Mask the I_COLLISION interrupt bit
ı	WI_COLLISION	0: Do not mask
0	M BC IVI	1: Mask I_BC_LVL interrupt bit
0	M_BC_LVL	0: Do not mask

Address: 0Bh--**Power** Reset Value: 0x0000_0001

Type: Read/write

Bit	Name	Description
7:4	Reserved	Do Not Use
		Power enables:
		PWR[0]: Bandgap and wake circuit
		PWR[1]: Receiver powered and current references for Measure block
3:0	PWR[3:0]	PWR[2]: Measure block powered
		PWR[3]: Enable internal oscillator,for PD PHY
		It is expected that PWR=4'h1 is used for low power WAKE detection.
		PWR=4'h7 is used for all other detection

Address: 0Ch--Reset Reset Value: 0x0000_0000

Type: Write/Clear

Bit	Name	R/W/C	Description
7:2	Reserved	N/A	Do Not Use
1	PD_RESET	W/C	1: Reset just the PD logic for both the PD transmitter andreceiver
0	SW_RES	W/C	1: Reset the ET7301B including the I2C registers to their
U			defaultvalues

Address: 0Dh--**OCPreg**Reset Value: 0x0000_1111

Type: Read/write

Bit	Name	Description	
7:4	Reserved	Do Not Use	
3	OCP_RANGE	1: OCP range between 100 mA-800 mA (max_range=800 mA)	
3		0: OCP range between 10 mA-80 mA (max_range=80 mA)	
	OCP_CUR[2:0]	111: max_range (see bit definition above for OCP_RANGE)	
		110: 7*max_range/8	
		101: 6*max_range/8	
2:0		100: 5*max_range/8	
2.0		011: 4*max_range/8	
		010: 3*max_range/8	
		001: 2*max_range/8	
		000: 1*max_range/8	

Address: 0Eh--**Maska**Reset Value: 0x0000_0000

Type: Read/Write

Bit	Name	Description
7	M_OCP_TEMP	1: Mask the I_OCP_TEMP interrupt
6	M_TOGDONE	1: Mask the I_TOGDONE interrupt
5	M_SOFTFAIL	1: Mask the I_SOFTFAIL interrupt
4	M_RETRYFAIL	1: Mask the I_RETRYFAIL interrupt
3	M_HARDSENT	1: Mask the I_HARDSENT interrupt
2	M_TXSENT	1: Mask the I_TXSENT interrupt
1	M_SOFTRST	1: Mask the I_SOFTRST interrupt
0	M_HARDRST	1: Mask the I_HARDRST interrupt

Address: 0Fh--**Maskb** Reset Value: 0x0000_0000

Type: Read/Write

Bit	Name	Description
7:1	Reserved	Do Not Use
0	M_GCRCSENT	1: Mask the I_GCRCSENT interrupt

Address: 3Ch—**Status0a**Reset Value: 0x0000_0000

Type: Read

Bit	Name	Description
7:6	Reserved	Do Not Use
5	SOFTFAIL	1: All soft reset packets with retries have failed to get aGoodCRC acknowledge. This status is cleared when aSTART_TX, TXON or SEND_HARD_RESET is

		executed	
4	RETRYFAIL	1: All packet retries have failed to get a GoodCRCacknowledge. This status is	
4		cleared when a START_TX,TXON or SEND_HARD_RESET is executed	
	POWER3 POWER2	Internal power state when logic internals needs to control thepower state.	
		POWER3 corresponds to PWR3 bit andPOWER2 corresponds to PWR2 bit.	
3:2		The power state is thehigher of both PWR[3:0] and {POWER3, POWER2,	
		PWR[1:0]}	
		so that if one is 03 and the other is F then the internal powerstate is F	
1	SOFTRST	1: One of the packets received was a soft reset packet	
0	HARDRST	1: Hard Reset PD ordered set has been received	

Address: 3Dh—**Status1a**Reset Value: 0x0000_0000

Type: Read

Bit	Name	Description			
7:6	Reserved	Do Not Use			
5:3	TOGSS3 TOGSS2 TOGSS1	000: Toggle logic running (processor has previously writtenTOGGLE=1) 001: Toggle functionality has settled to SRCon CC1(STOP_SRC1 state) 010: Toggle functionality has settled to SRCon CC2(STOP_SRC2 state) 101: Toggle functionality has settled to SNKon CC1(STOP_SNK1 state) 110: Toggle functionality has settled to SNKon CC2(STOP_SNK2 state) 111: Toggle functionality has detected AudioAccessory with VRA on both CC1 and CC2 (settles to STOP_SRC1 state) Otherwise: Not defined (do not interpret)			
2	RXSOP2DB 1: Indicates the last packet placed in the RxFIFO is typeSOP"_DEBUG (SOP double prime debug)				
1	RXSOP1DB	Indicates the last packet placed in the RxFIFO is typeSOP'_DEBUG (SOP prime debug)			
0	RXSOP	1: Indicates the last packet placed in the RxFIFO is type SOP			

Address: 3Eh—Interrupta
Reset Value: 0x0000_0000

Type: Read/Clear

Bit	Name	Description			
7	I_OCP_TEMP	1: Interrupt from either a OCP event on one of the VCONNswitches or an			
		over-temperature event			
6	I_TOGDONE	Interrupt indicating the TOGGLE functionality wasterminated because a			
0		device was detected			
5	I_SOFTFAIL 1: Interrupt from automatic soft reset packets with retrieshave failed				
4	I_RETRYFAIL 1: Interrupt from automatic packet retries have failed				
3	I_HARDSENT 1: Interrupt from successfully sending a hard reset ordered set				
2	I_TXSENT	1: Interrupt to alert that we sent a packet that wasacknowledged with a			
		GoodCRC response packet			

_	1	I_SOFTRST	1: Received a soft reset packet	
()	I_HARDRST	1: Received a hard reset ordered set	

Address: 3Fh—Interruptb
Reset Value: 0x0000_0000

Type: Read/Write

Bit	Name	Description			
7:1	Reserved	Do Not Use			
0	I GCRCSENT	1: Sent a GoodCRC acknowledge packet in response to an incoming packet			
U	I_GCKC3ENT	that has the correct CRC value			

Address: 40h--**Status0**Reset Value: 0x0000_0000

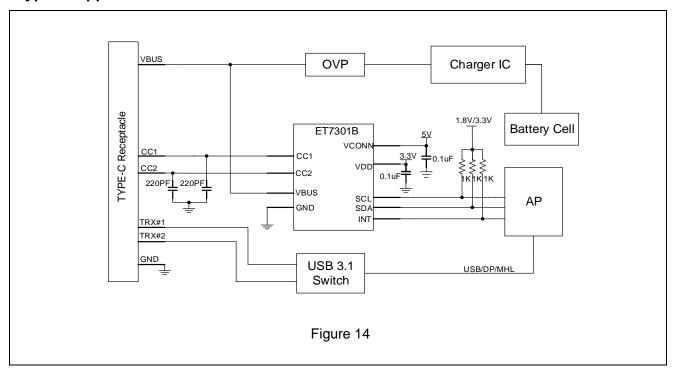
Type: Read

Bit	Name	Description		
7	VBUSOK	1: VBUS is higher than VVBUSthr threshold		
7		0: VBUS is lower than VVBUSthr threshold		
		1: Transitions are detected on the active CC* line. This bit goeshigh after a		
6	ACTIVITY	minimum of 3 CC transitions, and remains high fortACTIVITY after last transition		
0	ACTIVITY	on CC		
		0: inactive		
5	COMP	1: Measured CC*input is higher than reference level driven from the MDAC		
5	COMP	0: Measured CC*input is lower than reference level driven from the MDAC		
		1: Indicates the last received packet had the correct CRC. Thisbit remains set until		
4	CRC_CHK	the SOP of the next packet		
4	CKC_CHK	0: Packet received for an enabled SOP* and CRC for the enabled packet received		
		was incorrect		
	ALERT	1: Alert software an error condition has occurred. An alert iscaused by:		
3		TX_FULL: the transmit FIFO is full		
		RX_FULL: the receive FIFO is full		
2	WAKE	1: Voltage on CCx indicated that either a device, host or dual-role portis attempting		
		to attach		
		Current voltage status of the measured CC pin interpreted as host current levels as		
		follows:		
		00: < 200 mV (VRA)		
		01: >200 mV, <660 mV (VRd-USB)		
1:0	BC_LVL[1:0]	10: >660 mV, <1.63 V (VRd-1.5)		
1.0	DO_EVE[1.0]	11 :>1.63 V (VRd-3.0*)		
		Note the software must measure these at an appropriate time, while there is no		
		signaling activity on the selected CC line.BC_LVL is only defined when Measure		
		block is on which iswhen register bits PWR[2]=1 and either MEAS_CC1=1		
		orMEAS_CC2=1		

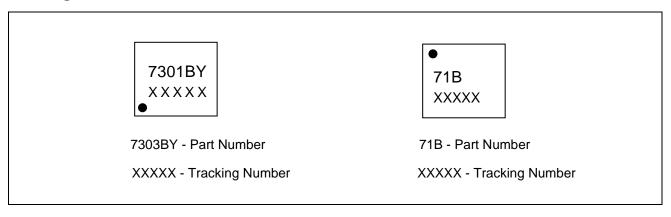
Address: 41h--**Status1**Reset Value: 0x0010_1000

Type: Read

Bit	Name	Description			
7	RXSOP2	1: Indicates the last packet placed in the RxFIFO is type SOP" (SOP double			
,		prime)			
6	RXSOP1	1: Indicates the last packet placed in the RxFIFO is type SOP' (SOP prime)			
5	RX_EMPTY	1: The receive FIFO is empty			
4	RX_FULL	1: The receive FIFO is full			
3	TX_EMPTY 1: The transmit FIFO is empty				
2	TX_FULL	1: The transmit FIFO is full			
1	OVRTEMP	1: Temperature of the device is too high			
0	OCP	1: Indicates an over-current or short condition has occurred on the VCONN			
0		switch			

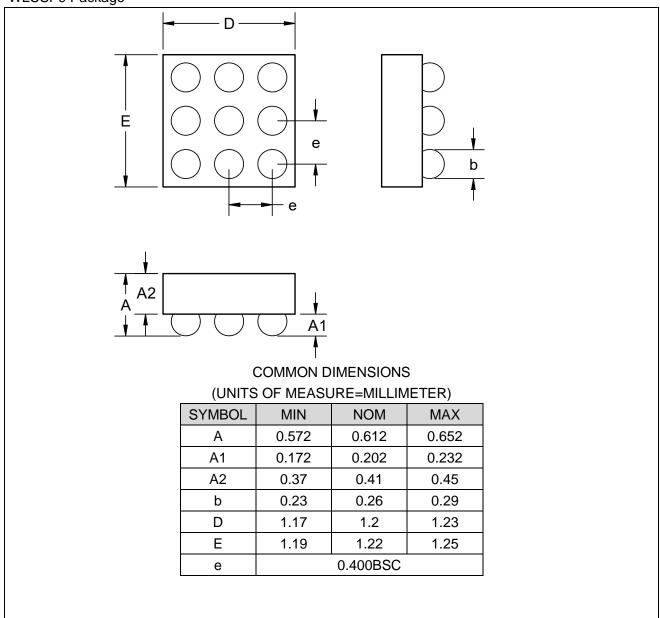

Address: 42h--Interrupt
Reset Value: 0x0000_0000
Type: Read/Clear

Bit	Name	Description		
7	I_VBUSOK	1: Interrupt occurs when VBUS transitions through 4.5V. This bit typically is		
/		usedto recognize port partner during startup		
6	I_ACTIVITY	1: A change in the value of ACTIVITY of the CC bus has occurred		
5	1.00140	1: A change in the value of COMP has occurred. Indicates selected CC line has		
5	I_COMP	tripped a threshold programmed into the MDAC		
4	I_CRC_CHK	1: The value of CRC_CHK newly valid. I.e. The validity of the incoming packet		
4		has been checked		
	I_ALERT	1: Alert software an error condition has occurred. An alert is caused by:		
3		TX_FULL: the transmit FIFO is full		
		RX_FULL: the receive FIFO is full		
2	1 MAKE	1: Voltage on CC indicated a device attempting to attach .Software must then		
	I_WAKE	Power up the clock and receiver blocks		
1:0	I_CLOLLISION	1: When a transmit was attempted, activity was detected on the active CC line		
1.0		Transmit is not done. The packet is received normally		
0	I_BC_LVL	1: A change in host requested current level has occurred		

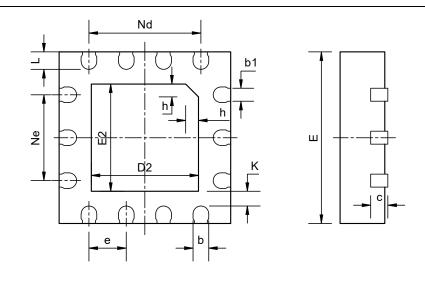

Address: 43h--**FIFOs**Reset Value: 0x0000_0000
Type: Read or Write

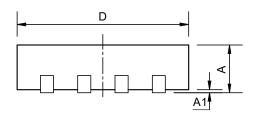
Bit	Name	Description			
		Writing to this register writes a byte into the transmit FIFO		Writing to this register writes a byte into the transmit FIFO. Reading from this	
7:0	TX/RX Token	register reads from the receive FIFO. Each byte is a coded token. Or a token			
		followed by a fixed number of packed data byte			

Typical Application



Marking




Package Dimension

WLCSP9 Package

QFN14(2.5*2.5)

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX	
Α	0.7	0.75	0.8	
A1	0	0.02	0.05	
b	0.20	0.25	0.30	
b1		0.18REF		
С		0.20REF		
D	2.40	2.60		
D2	1.30	1.50		
е	0.50BSC			
Ne	1.00BSC			
Nd	1.50BSC			
Е	2.40 2.50 2.60			
E2	1.30	1.40	1.50	
L	0.25	0.30	0.35	
h	0.20 0.25 0.30			
K	0.25REF			

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2018-08-08	Original Version	Liu Yi Guo	Liu Yi Guo	Liu Jia Ying
1.1	2019-02-26	Add marking	Liu Yi Guo	Liu Yi Guo	Liu Jia Ying
1.2	2022-10-26	Update Typeset	Tianqh	Liu Yi Guo	Liu Jia Ying