

Very-Low Dropout High PSRR 1A LDO

General Description

ET5A0XX series are the fixed output 1A LDO with auto discharge function, It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR) ,low noise, very low dropout, fast start-up and excellent output accuracy.

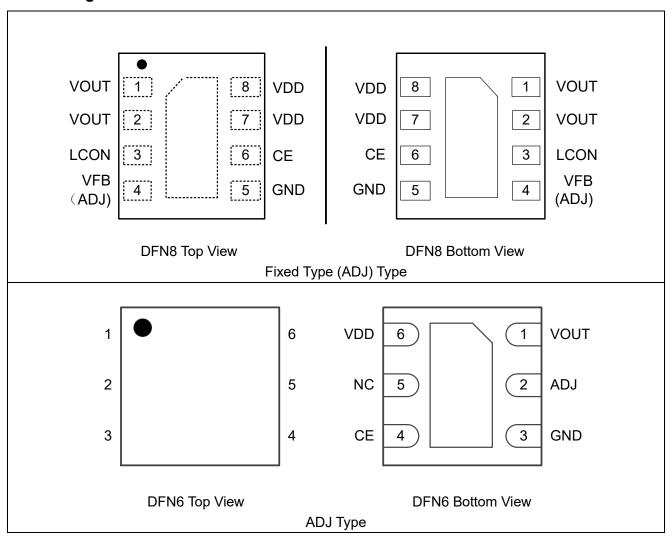
ET5A0XX series are stable with a 1.0~10µF ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent Regulation and transient response. It can choose the output current between 500mA and 1A by setting the LCON pin to high or low (only some package have this function).

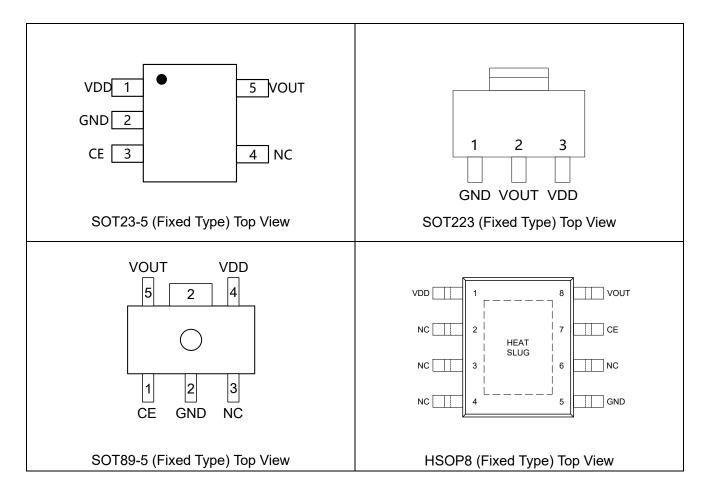
ET5A0XX series are offered SOT23-5, SOT89-5, SOT-223, DNF6(2×2), DNF8(1.2×1.6), HSOP8 packages

Features

- Wide input voltage range from 1.8V to 5.5V
- Output current 500mA/1A optional
- Output Voltage is 1.2V 1.75V 1.8V 2.8V 3.0V 3.3V ADJ(0.75V to 4.3V) etc
- Low I_Q is typical 110μA
- Excellent load/line transient response
- Low dropout voltage is 135mV@1A/3.3V output current
- Built-in over-current protection and thermal shutdown circuit
- Built-in inrush current suppression circuit and current limit circuit
- Reverse current protection

Applications

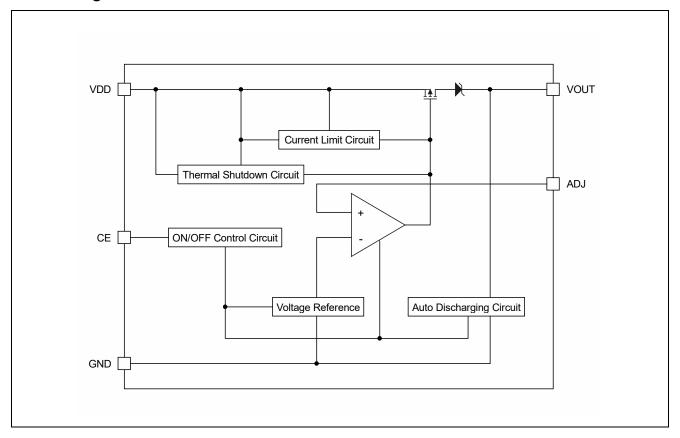

- Constant-voltage power supply for battery-powered device
- Constant-voltage power supply for TV, notebook PC and home electric appliance
- Constant-voltage power supply for portable equipment
- Label Information


Device Information

ET 5A0 <u>XX</u> <u>X</u> <u>B</u>

Output Voltage		Package			Auto-discharging Function	
			<u>S5</u>	SOT23-5		
			<u>/</u>	SOT89-5		
VV	X.XV/ADJ fixed output	<u>x</u>	I	SOT223	В	Available
<u>XX</u>			<u>Y2</u>	DFN6(2×2)	<u>B</u>	
			<u>Y</u>	DFN8(1.2×1.6)		
			<u>M</u>	HSOP8		

Pin Configuration



Pin Function

	Pin No.					Pin	Pin	
SOT23-5	SOT89-5	SOT223	DFN6	DFN8		HSOP8	Name	Function
			ADJY2B	XXYB	ADJYB		Name	1 dilction
2	2	1	3	5	5	5	GND	Ground Pin
5	5	2	1	1/2	1/2	8	OUT	Output Pin
1	4	3	6	7/8	7/8	1	IN	Input Pin
3	1		4	6	6	7	CE	Chip Enable Pin
4	3		5			2/3/4/6	NC	No connect
				4			FB	VOUT Feedback Pin
								Adjustable Regulator
								Feedback Input.
			2		4		ADJ	Connect to output
								voltage resistor divider
								central node.
								Output Current Limit
			3	3	3		LCON	Alternate Pin ("H"=1A,
								"L"=500mA)

Block Diagram

Functional Description

Input Capacitor

A $1\sim10\mu F$ ceramic capacitor is recommended to connect between VDD and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VDD and GND.

Please pay attention, in the case of high impedance of the power supply, the input capacitance of the IC is small or the capacitor is not connected, the oscillation may occur. When the capacitance value of the output capacitor is greater than the capacitance value of the input capacitor, it is possible to generate oscillation.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is $1\sim10\mu\text{F}$, ceramic capacitor is recommended, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to VOUT and GND pins.

CE Pin Operation

The ET5A0XX is turned on by setting the CE pin to "H". Since the CE pin is neither pulled down nor pulled up internally, do not set it in floating status. When the CE pin is not used, connect the CE pin with VDD to keep the LDO in operating mode.

Current Limit Protection

When output current of VOUT pin is higher than current limit threshold or the VOUT pin is direct short to GND, the current limit protection will be triggered and clamp the output current at a predesigned level to prevent over-current and thermal damage.

When setting the LCON pin (ET5A0XXYB) to "H", ET5A0XX output current limit will be 1A(min), When setting the LCON pin to "L", ET5A0XX output current limit will be 500mA(min).

Thermal Shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately +120°C the output circuit is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

LCON Pin Operation

LCON pin (ET5A0XXYB) can be set to different current limit by alternating the LCON pin to "H" or "L". When setting the LCON pin to "H", the output current limit will be 1A(min), the short current limit will be 110mA, and the IRUSH 500mA; If "L" is set, the output current limit will change to 500mA(min), the short current limit and IRUSH will become 60mA and 300mA respectively.

Reverse Current Protection Circuit

If VOUT is higher than VDD, the parasitic diode of Pch output transistor becomes forward direction. As a result, the current flows from VOUT pin to VDD pin.

The ET5A0XX series switches the mode to the reverse current protection mode before VIN becomes lower than VOUT by connecting the parasitic diode of Pch output transistor to the backward direction, and connecting the gate to VOUT pin. As a result, the Pch output transistor is turned off. However, from VOUT pin to GND pin, via the internal divider resistors, very small current IREV flows.

Adjustable Output Voltage

The output voltage of ET5A0ADJ is adjustable using external 2-resistors. For better performance of the circuit, the R2 value need to be between $30k\Omega$ and $100k\Omega$. The output voltage is calculated by:

VOUT = (1+R1/R2)*0.75 (V)

Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other condition beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Rating	Unit
V_{IN}	Input Voltage	-0.3 to 6	V
Vce	Input Voltage (CE Pin)	-0.3 to 6	V
Vouт	Output Voltage	-0.3 to V _{IN} +0.3	V
I _{MAX}	Maximum Load Current	1000	mA
P _D	Maximum Power Consumption	1200	mW
TJ	Operating Junction Temperature	-40 to 150	°C
T _{STG}	Storage Temperature	-65 to 150	°C
T _{SOLD}	Lead Temperature (Soldering, 5sec)	260	°C

Recommended Operating Conditions

Symbol	Item	Rating	Unit
Vin	Input Voltage	1.8 to 5.5	V
l _{out}	Output Current	0 to 1000	mA
T _A	Operating Ambient Temperature	-40 to 85	°C
Cin	Effective Input Ceramic Capacitor Value	1 to 10	μF
Соит	Effective Output Ceramic Capacitor Value	1 to 10	μF
ESR	Input and Output Capacitor Equivalent Series Resistance	5 to 100	mΩ

Electrical Characteristics

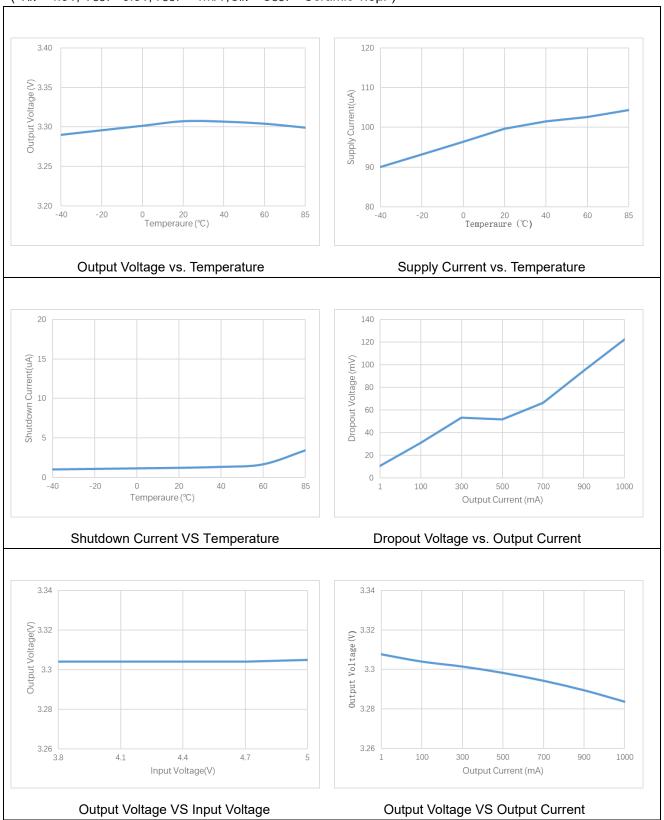
 V_{IN} = V_{OUT} +1.0V, I_{OUT} =1mA, C_{IN} = C_{OUT} =1uF, unless otherwise noted, T_A =25 $^{\circ}$ C

Symbol	Item	Conditions		Min.	Тур.	Max.	Unit
Vоит	Output Voltage			×0.98		×1.02	V
Vin	Input Voltage (1)			1.8		5.5	V
l			LCON = L	500			mA
Іым	Output Current Limit	V _{IN} =V _{OUT} +0.5V	LCON = H	1000			mA
ΔV _{LINE}	Line Regulation	V _{OUT} +0.5V ≤ V _{IN} ≤ 5.5V			0.02		%/V
ΔV _{LOAD}	Load Regulation	V _{IN} =V _{OUT} +0.5V, 1mA ≤ I _{OUT} ≤ 1A			5	40	mV
	Description (2)	1.2V ≤ V _{OUT} < 2.6V, I _{OUT} =1A,			170	220	m\/
		V _{оит} dropping to 0.98×V _{оит}			170		mV
V		2.6V ≤ V _{OUT} < 3.3V, I _{OUT} =1A,		150	185	m\/	
V_{DIF}	Dropout Voltage ⁽²⁾	V _{OUT} dropping to 0.98×V _{OUT}			130	165	mV
		$3.3V \le V_{OUT} \le 4.3V, I_{OUT} = 1A,$			125	170	m\/
		Vout dropping to 0.98×Vout			135	170	mV

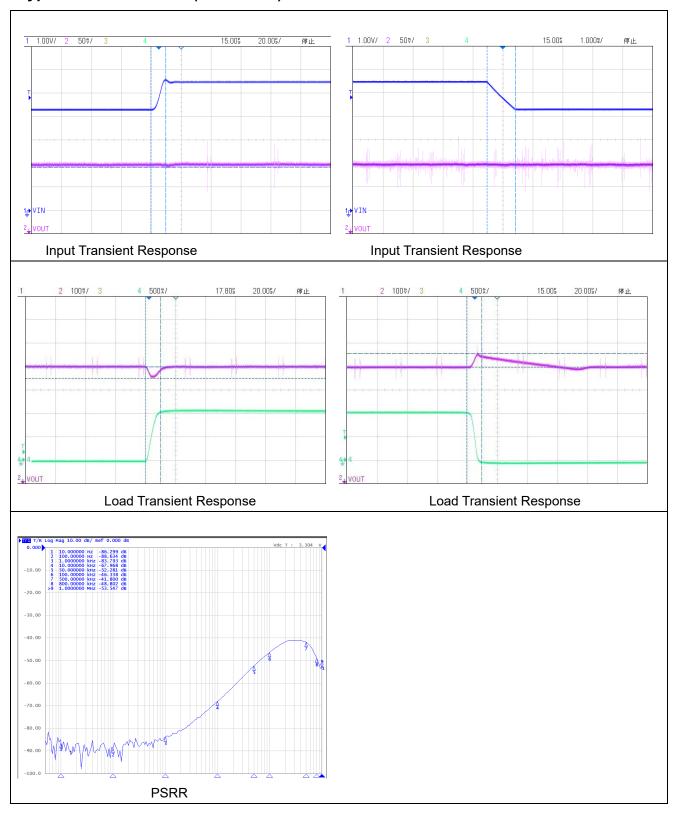
I _{Q_ON}	Supply Current	I _{OUT} = 0mA			110		μA
I _{Q_OFF}	Standby Current	V _{CE} = 0V			1	3	μA
PSRR	Ripple Rejection (3)	·-	ple 0.2Vp-p, V, I _{ОUТ} =30mA		70		dB
en	Output Noise (3)	10Hz to 100kl	Hz,I _{OUT} =30mA		50	80	μV _{RMS}
laa	Short Current Limit	V _{OUT} =0V	LCON = L		60		mΛ
Isc	Short Current Limit	VOUT-UV	LCON = H		110		mA
1	Insuch Current Limit		LCON = L		300		mA
IRUSH	Inrush Current Limit		LCON = H		500		mA
I _{CE}	CE Pull-down Current	·				1	μA
V _{IH_CE}	CE Input Voltage High			1.0			V
VIL_CE	CE Input Voltage Low					0.3	V
V _{IH_LCON}	LCON Input Voltage High			1.0			V
V _{IL_LCON}	LCON Input Voltage Low					0.3	V
ILCON	LCON Pull-down Current					1	μA
R _{DIS}	Auto-discharge Resistance	V _{IN} = 4V,V _{CE} = 0V			60		Ω
T _{TSD}	Thermal Shutdown Temperature				155		°C
T _{TSR}	Thermal Shutdown Released Temperature				120		°C

Note (1): Here V_{IN} means internal circuit can work normal. If $V_{\text{IN}}\!<\!V_{\text{OUT}},$

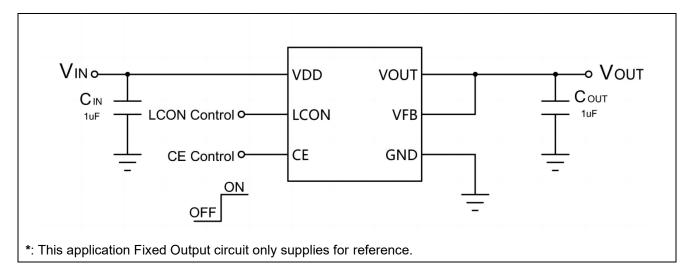
Reverse current protection circuit will work .

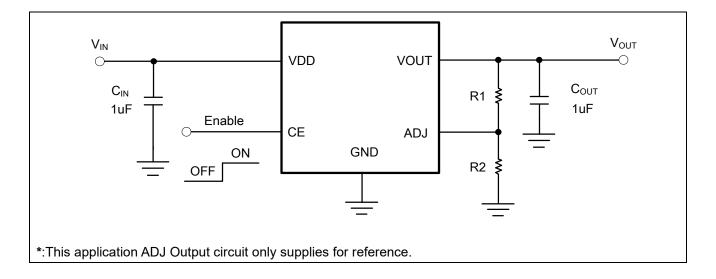

Note (2): V_{DROP} FT test method: test the V_{OUT} voltage at V_{SET} + $V_{DROPMAX}$ with output current.

Note (3): Guaranteed by design and characterization. not a FT item.

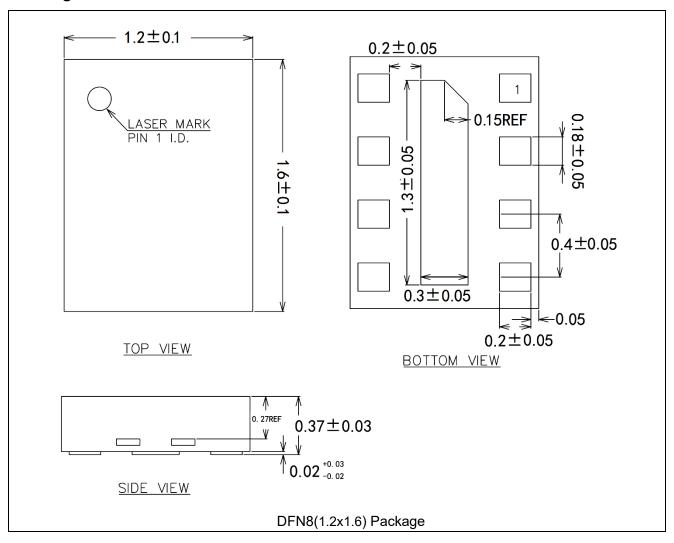

Typical Characteristics

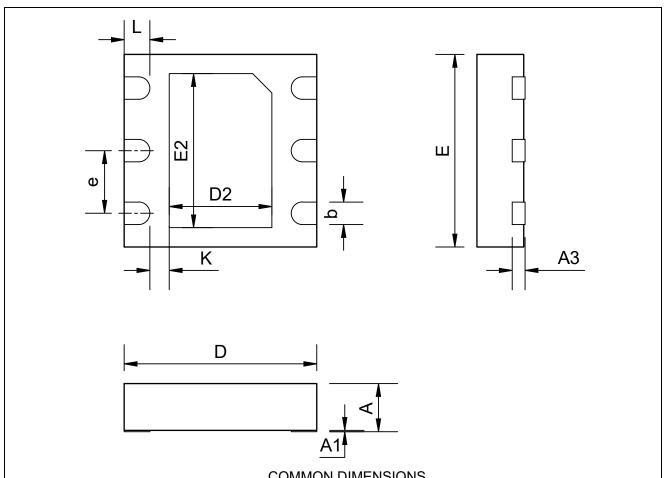
Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.


(V_{IN} = 4.3V, V_{OUT} =3.3V, I_{OUT} = 1mA , C_{IN} = C_{OUT} = Ceramic 1.0 μ F)

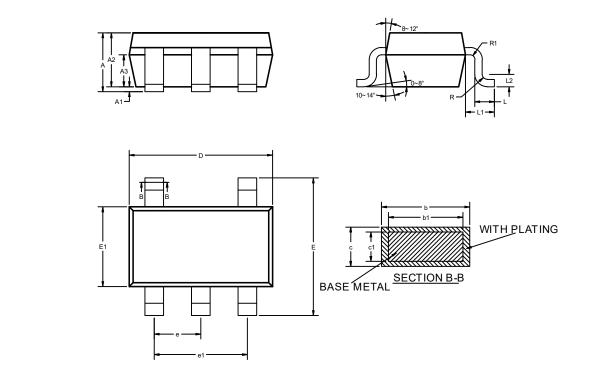


Typical Characteristics(Continued)



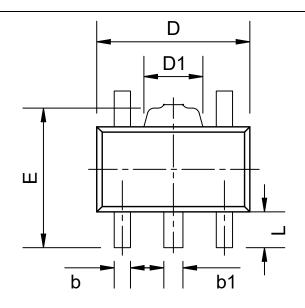

Application Circuits

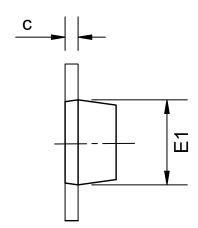
Package Dimension

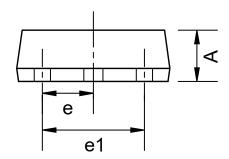


COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN NOM		MAX			
Α	0.70	0.75	0.80			
A1	0.00	0.02	0.05			
A3	0.20REF					
b	0.25	0.25 0.35				
D	1.90	2.00	2.10			
Е	1.90	2.00	2.10			
D2	0.65	0.80	0.90			
E2	1.35	1.50	1.60			
е	0.65BSC					
L	0.30	0.35	0.40			
k	0.20					

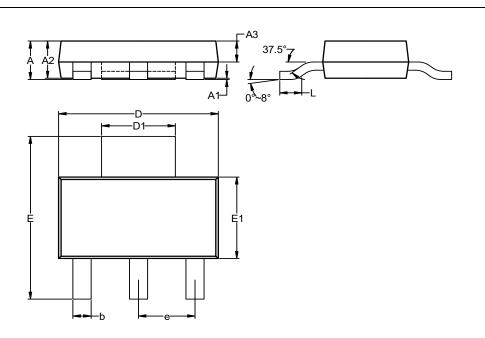

DFN6(2x2) Package




COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

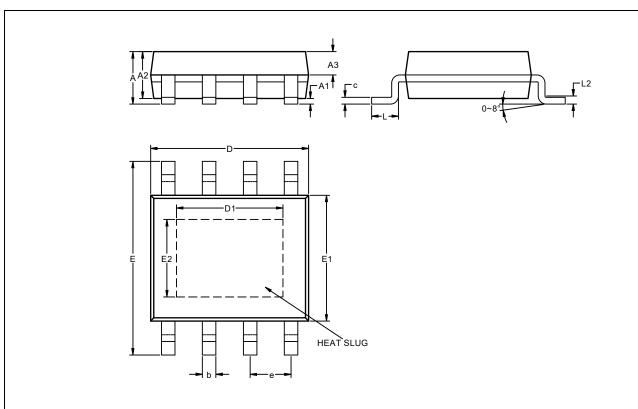
SYMBOL	MIN	NOM	MAX		
Α	_	_	1.250		
A1	0		0.150		
A2	1.000	1.100	1.200		
A3	0.600	0.650	0.700		
b	0.360		0.450		
b1	0.350	0.380	0.410		
С	0.140		0.200		
c1	0.140	0.150	0.160		
D	2.826	2.926	3.026		
Е	2.600	2.800	3.000		
E1	1.526	1.626	1.726		
е	0.900	0.950	1.000		
e1	1.800	1.900	2.000		
L	0.300	0.400	0.500		
L1	0.590REF				
L2	0.250BSC				
R	0.050		0.200		
R1	0.050	_	0.200		

SOT23-5 Package



COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	NOM
Α	1.5
b	0.42
b1	0.46
С	0.4
D	4.5
D1	1.6
Е	4.1
E1	2.45
е	1.5
e1	3.0
L	1


SOT89-5 Package

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	1.5	1.65	1.8
A1	0.03	0.06	0.09
A2	1.45	1.60	1.75
A3	0.8	0.9	1
b	0.69	-	0.78
D	6.3	6.5	6.7
D1		3.00REF	
е		2.30BSC	
Е	6.8	7	7.2
E1	3.4	3.5	3.6
L	0.9	-	-

SOT223 Package

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	1.35	1.55	1.75		
A1	0	0.1	0.15		
A2	1.25	1.4	1.65		
A3	0.5	0.6	0.7		
b	0.38	-	0.51		
С	0.17	-	0.25		
D	4.8	4.9	5		
D1	3.1	3.3	3.5		
е		1.27BSC			
Е	5.8	6	6.2		
E1	3.8	3.9	4		
E2	2.2	2.4	2.6		
L	0.45 0.6 0.8				
L2	0.25BSC				

HSOP8 Package

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2017-07-28	Original Version	Liu Yi Guo	Liu Yi Guo	Zhu Jun Li
1.1	2018-06-20	Chang the input voltage to 5.5V	Liu Yi Guo	Liu Yi Guo	Liujy
1.2	2020-03-11	Documents check and formalize	Shib	Shib	Liujy
1.3	2020-03-18	Add Marking	Shib	Shib	Zhujl
1.4	2021-2-3	Add Typical Characteristic Graph	Shib	Shib	Liujy
1.5	2021-9-24	Add Tape Information	Shib	Shib	Liujy
1.6	2021-9-30	Correct Typo	Liuyg	Liuyg	Liujy
1.7	2023-3-29	Update form	Shibo	Liuyg	Liujy