

Very High PSRR Low Noise 500mA RF LDO

General Description

The ET559XX is the high performance 500mA LDO with auto discharge function, it uses an advanced CMOS process and a PMOSFET pass device to achieve very high-power supply rejection ratio (PSRR), very low noise, very low dropout, very low ground current, fast start-up and excellent output accuracy.

The ET559XX is stable with a 1.0µF ceramic input and output capacitor, uses a precision voltage reference and feedback loop to achieve high excellent Regulation and transient response.

The ET559XX is offered small DFN4(1x1) and SOT23-5 package, which is ideal for small form factor portable equipment.

Features

Wide Input Voltage Range: 1.9V to 6.5V

• Up to 500mA Load Current

Standard Output Voltage: 3.6V, 5.0V and etc

Very Low IQ: 60µA

■ Ultra Low Dropout: 330mV at 500mA Load @Vout=3.6V

Very High PSRR: 75dB at 1KHz

Ultra Low Noise: 45uVrms at 3.6V output

Ultra-Fast Start-Up Time: 80µs

Excellent Load/Line Transient Response

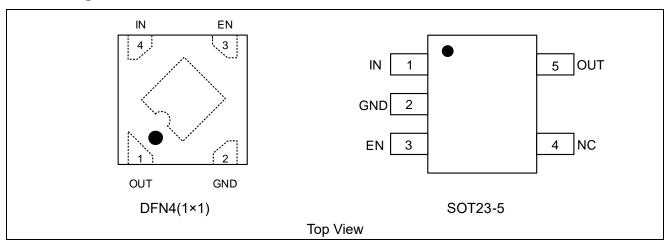
Line Regulation: 0.03% typical

Package:

Part No.	Package	Packing Option	MSL	
ET559XXYB	DFN4(1mm x 1mm)	Tape and Reel,10K	Level 1	
ET559XXB	SOT23-5	Tape and Reel,3K	Level 3	

Applications

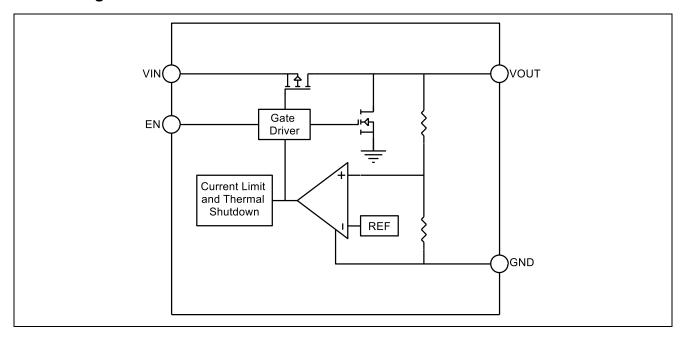
Smart Phones and Cellular Phones


Portable instruments

Device Information

ET 559 <u>XX</u> <u>X</u> <u>B</u>

	XX Output Voltage		<u>X</u> Package		<u>B</u> Auto-discharge Function		
ſ	VV	Output Voltage is	Y	DFN4-1.0×1.0	Р	Auto dio de avas	
	XX	X.XV	1	SOT23-5	В	Auto-discharge	


Pin Configuration

Pin Function

	Pin No.	Pin	Din Eunation
DFN4	SOT23-5	Name	Pin Function
1	5	OUT	Output pin. A low-ESR capacitor should be connected to this pin to GND.
2	2	GND	Ground pin.
3	3	EN	Enable control input pin, active high. Do not leave EN floating
4	1	IN	Supply input pin. Must be closely decoupled to GND with a ceramic capacitor
		Thermal	Thermal pad for DFN4(1×1) package, connect to GND or leave floating.
-	4	Pad or NC	Do not connect to any potential other than GND. NC for SOT23-5 no connection.

Block Diagram

Functional Description

Input Capacitor

A 1 μ F ceramic capacitor is recommended to connect between V_{IN} and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both V_{IN} and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from $1\mu F$ to $4.7\mu F$, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics are X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

ON/OFF Input Operation

The ET559XX is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

High PSRR and Low Noise

RF circuits such as LNA (low-noise amplifier), up/down-converter, mixer, PLL, VCO, and IF stage, require low noise and high PSRR LDOs. The temperature-compensated crystal oscillator circuit requires very high PSRR at RF power amplifier burst frequency. For instance, minimum 65dB PSRR at 217Hz is recommended for the GSM handsets.

The ET559XX, with PSRR of 75dB at 1KHz, is suitable for most of these applications that require high PSRR and low noise.

Ultra-Fast Start-up

After enabled, the ET559XX is able to provide full power in as little as tens of microseconds, typically 80µs. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Fast Transient Response

Fast transient response LDOs can also extend battery life. To meet this load requirement, the LDO must react very quickly without a large voltage drop or overshoot — a requirement that cannot be met with conventional, general-purpose LDOs.

The ET559XX's fast transient response from 1 to 500mA provides stable voltage supply for fast DSP and GSM chipset with fast changing load.

Low Quiescent Current

The ET559XX, consuming only around 40µA for all input range and output loading, provides great power saving in portable and low power applications.

Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin is short circuit to GND, the current limit protection will be triggered and clamp the output current to approximately 700mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal Shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately +130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Absolute Maximum Ratings

Symbol	Parameters (Items)	Value	Unit
V _{IN}	IN Voltage	-0.3 to 7.0	V
V _{EN}	Input Voltage (EN Pin)	-0.3 to V _{IN} +0.3	V
V _{OUT}	Output Voltage	` '	
I _{MAX}	Maximum Load Current	500	mA
V _{ESD}	Human Body Model (JEDEC JS-001)	±4000	V
VESD	Charged Device Model(JESD22-C101)	±1500	V
ILU	Latch up Current Maximum Rating (JESD78E)	m Rating (JESD78E) ±200	
P _{D_MAX}	Maximum Power Consumption	900	mW
Reja	Junction-to-ambient Thermal Resistance	110	°C/W
TJ	Operating Junction Temperature -40 to 150		°C
Tstg	Storage Temperature	-65 to 150	
Tslod	Lead Temperature (Soldering, 10 sec)	300	°C

Recommended Operating Conditions

Symbol	Item	Rating	Unit
VIN	Input Voltage	1.9 to 6.5	V
I _{OUT}	Output Current	0 to 500	mA
T _A	Operating Ambient Temperature	-40 to 85	°C
C _{IN}	Effective Input Ceramic Capacitor Value	0.47 to 4.7	uF
Соит	Effective Output Ceramic Capacitor Value	0.47 to 4.7	uF
ESR	Input and Output Capacitor Equivalent Series Resistance	5 to 100	mΩ

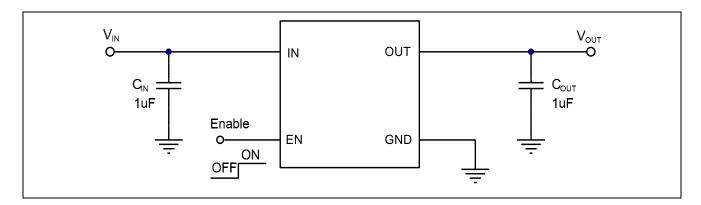
Electrical Characteristics

 $(V_{\text{IN}} = V_{\text{EN}} = V_{\text{OUT}} + 1.0V, \ I_{\text{OUT}} = 1\text{mA}, \ C_{\text{IN}} = 1\mu\text{F}, \ C_{\text{OUT}} = 1\mu\text{F}, \ Typical values are at } T_{\text{A}} = 25^{\circ}\text{C unless otherwise noted})$

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit	
	Input Voltage		1.9				
V _{IN} ⁽¹⁾	Operation Range				6.5	V	
\/ (2)	Dropout Valtage	Vоит=3.6V, Iоит = 500mA		330	500	mV	
V _{DROP} ⁽²⁾	Dropout Voltage	Vоит=5.0V, Iоит = 500mA		600	780	m۷	
IQ_ON	DC Supply Quiescent Current	Active mode: V _{EN} =V _{IN}		60	90	μΑ	
I_{Q_OFF}	DC Supply Shutdown Current	V _{EN} =0V		0.01	1	μΑ	
Vоит	Regulated Output Voltage	I _{OUT} =1mA, -40°C≤T _A ≤85°C	-2		2	%	
Pograve	Output Voltage	$V_{IN} = V_{OUT} + 1V \text{ to } 6.5V,$		0.03	0.2	%/V	
Regline	Line Regulation	I _{OUT} = 10mA		0.03	0.2	70/ V	
Reg _{LOAD}	Output Voltage Load Regulation	I _{OUT} from 1mA to 500mA		10	50	mV	
) / (3)	Lina Transiant	$I_{OUT} = 1mA$, $V_{IN} = V_{OUT} + 1V$ to 6.5V in 10us, $T_{A} = 25^{\circ}C$		10	25	mv	
V _{TRLN} ⁽³⁾	Line Transient	$I_{OUT} = 1$ mA, $V_{IN} = 6.5$ V to $V_{OUT} + 1$ V in 10us, $T_A = 25$ °C		10	25		
(2)		I _{OUT} from 1mA to 500mA in 10us, T _A =25°C		50	160		
V _{TRLD} ⁽³⁾	Load Transient	I _{OUT} from 500mA to 1mA in 10us, T _A =25℃		50	160	mv	
T _{ON}	Soft-start Time	From Enable to Power On, T _A =25℃,IOUT=20mA		80		μs	
Іоит	Output Current Limit		500			mA	
I _{LIMIT}	Current Limit		510	600	900	mA	
I _{SHORT}	Short Circuit Current Limit	Vout = 0V	60	120	180	mA	
PSRR ⁽³⁾	Power Supply Rejection Ratio	$f = 1kHz$, $C_{OUT} = 1\mu F$, $I_{OUT} = 30mA$, $V_{IN}=4.6V$, $T_A = 25^{\circ}C$		75		dB	
e _N ⁽³⁾	Output Noise	10Hz to 100kHz, $I_{OUT} = 100mA$, $V_{IN} = 4.6V$, $C_{OUT} = 1\mu F$, $T_A = 25^{\circ}C$		45		µV _{RMS}	
V _{ENL}	EN Low Threshold	V _{IN} = 1.9 to 6.5V			0.3	V	
V _{ENH}	EN High Threshold	V _{IN} = 1.9 to 6.5V	1.5			V	
R _{PD}	EN Pull-down Resistance		0.7	1	1.3	ΜΩ	
RLOW	Output Resistance of Auto Discharge at Off State	V _{EN} =0V, V _{IN} =4V, I _{OUT} =10mA		80		Ω	

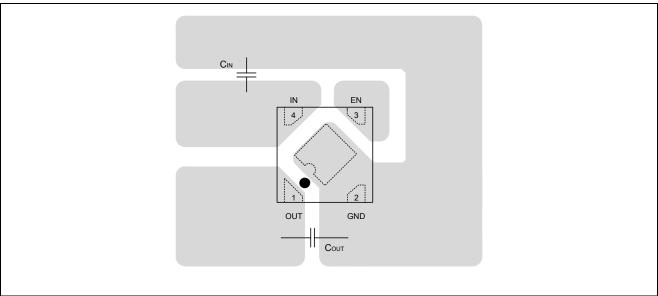
Electrical Characteristics (Continued)

(V_{IN}=V_{EN}=V_{OUT}+1.0V, I_{OUT}=1mA, C_{IN}=1μF, C_{OUT}=1μF, Typical values are at T_A=25°C unless otherwise noted)

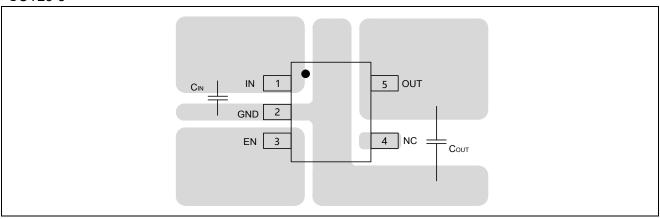

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Т	Over-temperature	T. Diging		155		°C
T _{TSD}	Shutdown Threshold	T _J Rising				
Thys	Over-temperature	T. falling from obutdown		O.F.		°C
	Shutdown Hysteresis	T _J falling from shutdown		25		C

Note1: Here V_{IN} means internal circuit can work normal. If $V_{IN} < V_{OUT}$, Output voltage follows V_{IN} (I_{OUT}=1mA), circuit is safety.

Note2: V_{DROP} FT test method: test the V_{OUT} voltage at V_{SET} + $V_{DROPMAX}$ with output current.

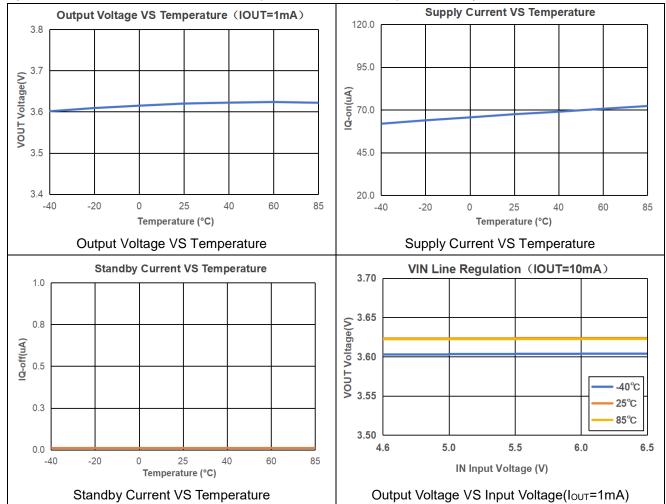

Note3: Guaranteed by design and characterization. not a FT item.

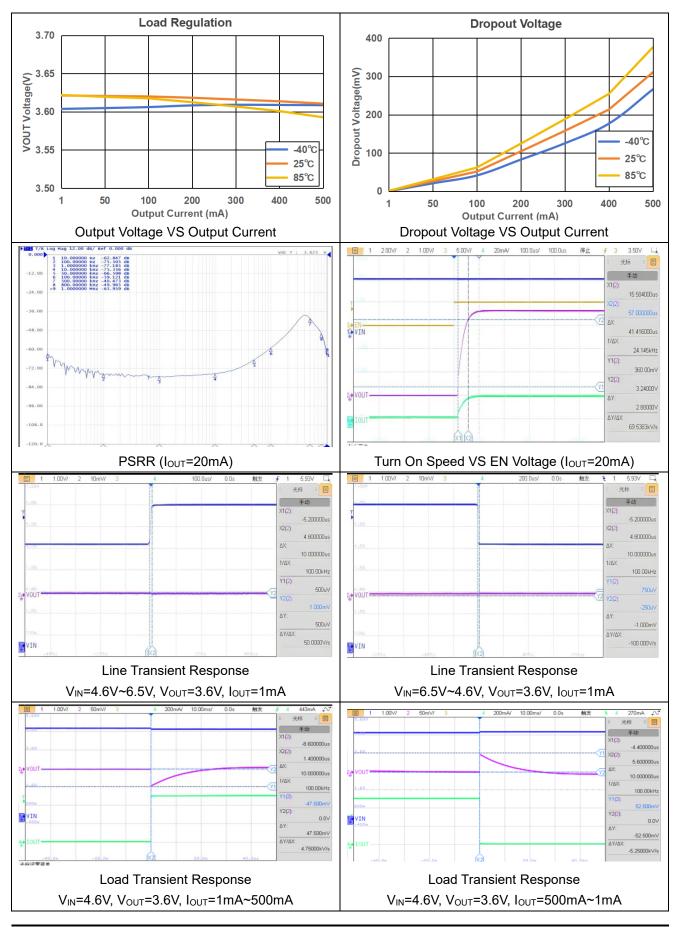
Application Circuits



PCB Layout Guide

DFN4

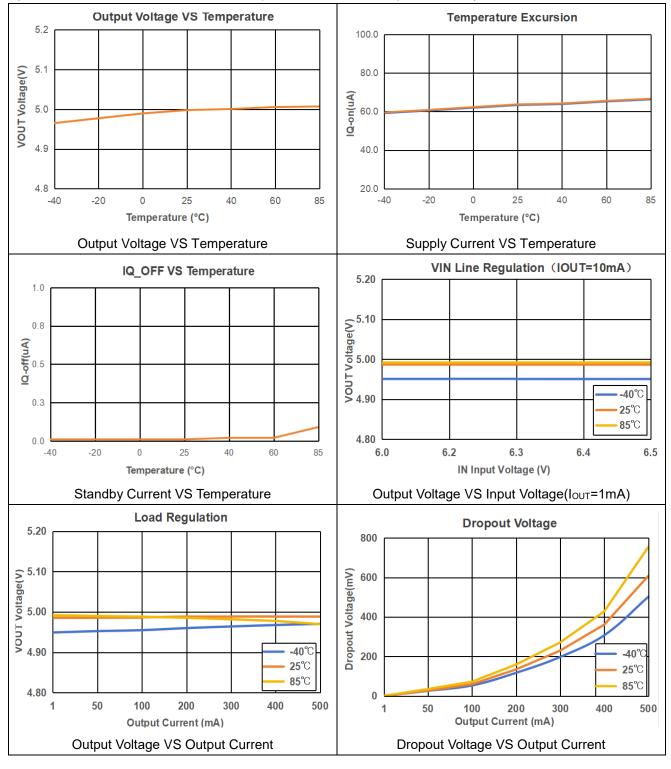

SOT23-5

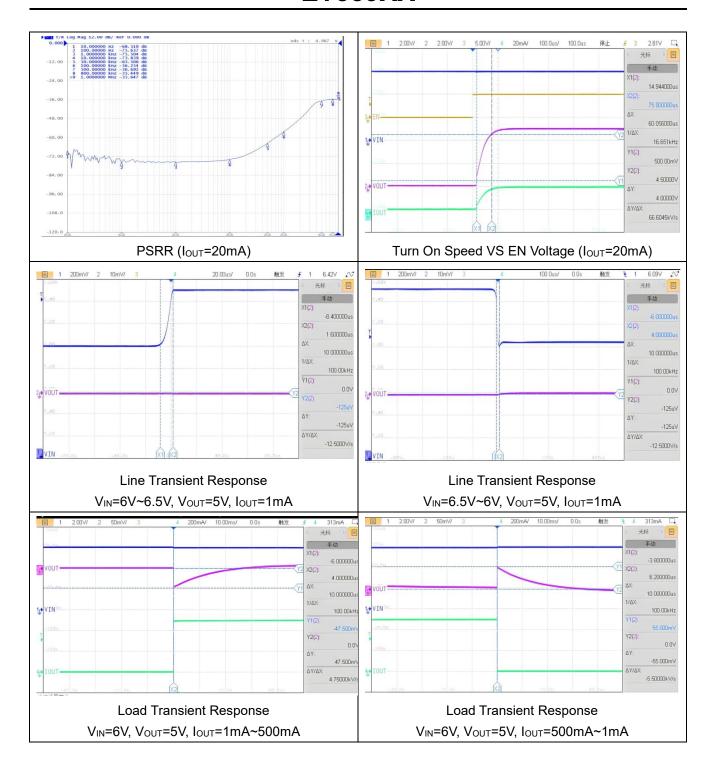


Typical Characteristics

ET55936

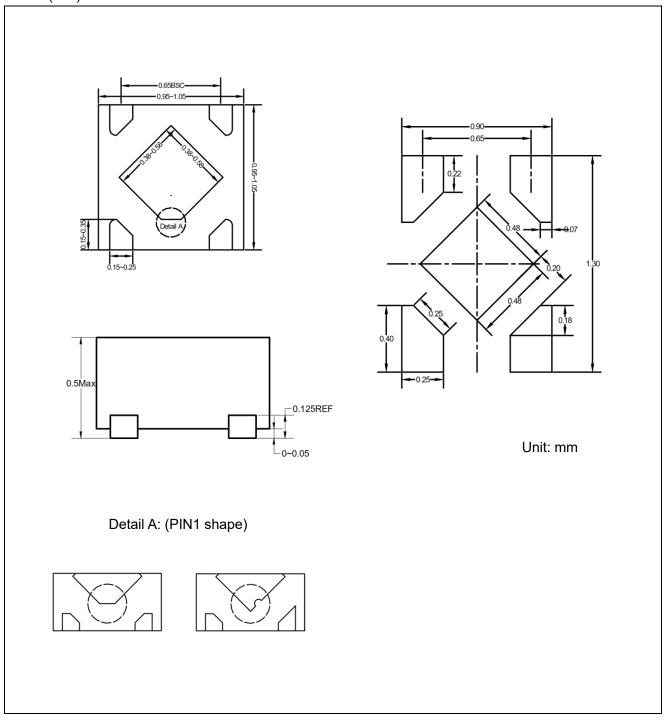
 $(V_{IN} = 4.6V, I_{OUT} = 1mA, C_{IN} = Ceramic 1.0\mu F, C_{OUT} = Ceramic 1.0\mu F, T_{A} = 25$ °C)

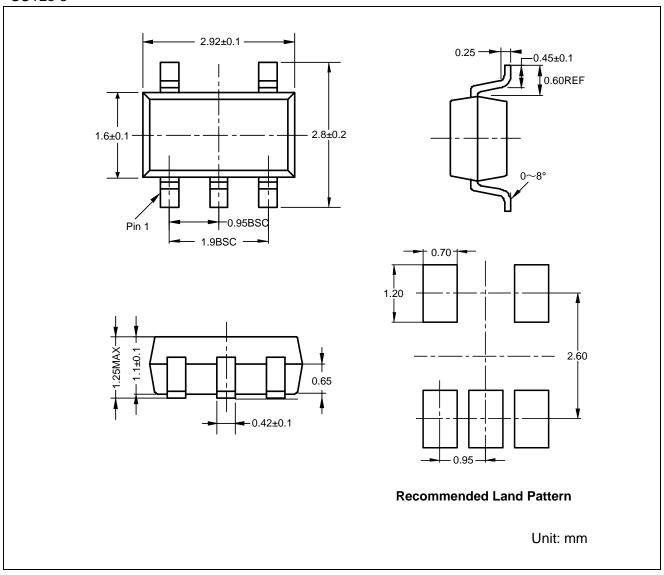




Typical Characteristics

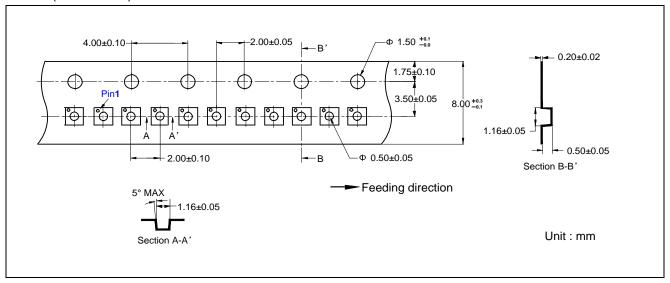
ET55950


 $(V_{IN} = 6.0V, I_{OUT} = 1mA, C_{IN} = Ceramic 1.0\mu F, C_{OUT} = Ceramic 1.0\mu F, T_{A} = 25$ °C)

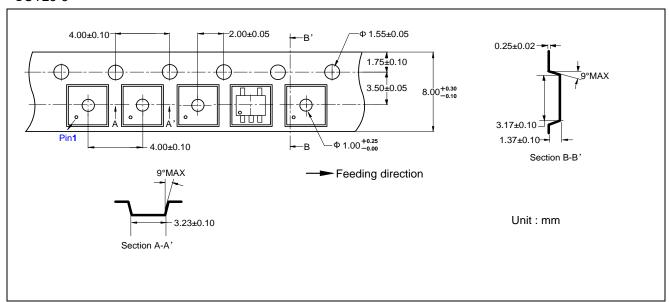


Package Dimension

DFN4(1×1)



SOT23-5



Tape Information

DFN4 (1mm ×1mm)

SOT23-5

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2025-06-20	Official Version	Hucy	Liuxm	Liujiaying