

ET518XXYB - High PSRR Low Noise 300mA LDO

General Description

The ET518XXYB family are the 300mA LDO with auto discharge function. It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR), low noise, low dropout, low ground current, fast start-up and excellent output accuracy.

The ET518XXYB family are stable with a 1.0μF ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent Regulation and transient response.

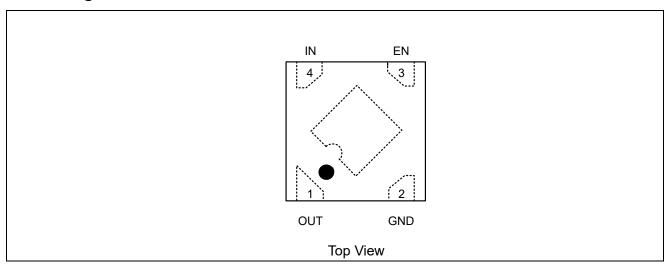
The ET518XXYB family offered in a small DFN4 package, which are ideal for small form factor portable equipment.

The ET518XXYB family are available in standard fixed output voltages of 0.8V(ET51808YB),1.2V (ET51812YB),1.5V(ET51815YB),1.8V(ET51818YB),2.4V(ET51824YB),2.5V(ET51825YB),2.8V(ET51828YB), 2.85V (ET518285YB), 2.9V (ET51829YB), 3.0V (ET51830YB), 3.3V (ET51833YB) and etc.

Features

- Wide Input Voltage Range from 1.7V to 5.5V
- Up to 300mA Load Current
- Standard Fixed Output Voltage :0.8V,1.2V, 1.5V, 1.8V, 2.4V, 2.5V, 2.8V, 2.85V, 2.9V, 3.0V and 3.3V etc.
- Very Low I_Q is 45μA Typical
- Low Dropout is Typical 270mV@1.8V at 300mA Load
- Very High PSRR: 70dB at 1KHz
- Very Low Noise is 35uVrms
- Excellent Load / Line Transient Response
- With Auto Discharging Function
- Package Information:

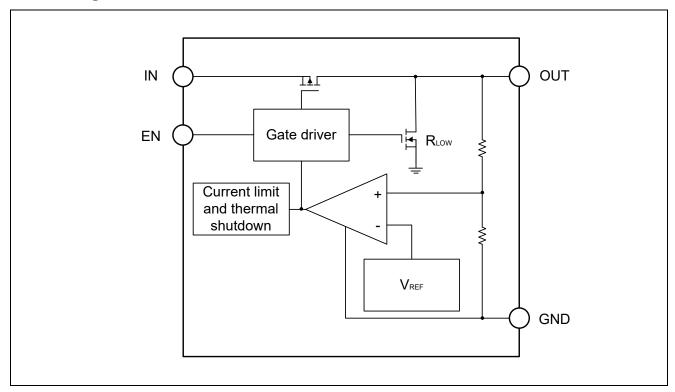
Part No.	Package	MSL	
ET518XXYB	DFN4 (1×1)	Level 1	


Applications

- Smart Phones and Cellular Phones
- Digital Still Cameras
- Portable Instrument

Mark Specification

Part No.	Marking	V _{OUT}	Auto Discharge Function
ET51808YB	XX	0.8V	Y
ET51812YB	XA	1.2V	Y
ET51815YB	ХВ	1.5V	Y
ET51818YB	XC	1.8V	Y
ET51824YB	XW	2.4V	Y
ET51825YB	XF	2.5V	Y
ET51828YB	XD	2.8V	Y
ET518285YB	XH	2.85V	Y
ET51829YB	XS	2.9V	Y
ET51830YB	XG	3.0V	Y
ET51833YB	XE	3.3V	Y


Pin Configuration

Pin Function

Pin No.	Pin Name	Pin Function		
1	OUT	Output pin. A low-ESR capacitor should be connected to this pin to GND.		
2	GND	Ground pin.		
3	EN Enable control input pin, active high. Do not leave EN floating			
4 IN		Supply input pin. Must be closely decoupled to GND with a ceramic capacitor		
- Thermal Pad		Thermal pad for DFN4(1×1) package, connect to GND or leave floating. Do not connect to any potential other than GND		

Block Diagram

Functional Description

Input Capacitor

A 1µF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from $0.47\mu F$ to $4.7\mu F$, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics is X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

ON/OFF Input Operation

The ET518XXYB is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Ultra Fast Start-up

After enabled, the ET518XXYB is able to provide full power in as little as tens of microseconds, typically 80µs. This feature will help load circuitry move in and out of standby mode in real time, eventually extend battery life for mobile phones and other portable devices.

Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin, the current limit protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.

Thermal shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately +130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Absolute Maximum Ratings

Symbol	Parameters (Items)	Value	Unit	
V _{IN}	IN Voltage	-0.3 to 6.0	V	
V_{EN}	Input Voltage (EN Pin)	-0.3 to V _{IN} +0.3	V	
Vout	Output Voltage	-0.3 to V _{IN} +0.3	V	
I _{MAX}	Maximum Load Current	300	mA	
PD	Maximum Power Consumption	400	mW	
1/	Human Body Model (JESD22-A114)	±4000	V	
V_{ESD}	Charged Device Model (JESD22-C101)	±1500	V	
Reja	Junction-to-ambient Thermal Resistance	250	°C/W	
R _{Ψjc} (1)	Junction-to-case(bottom) Thermal Resistance	139	°C/W	
TJ	Operating Junction Temperature	-40 to 150	°C	
T _{STG}	Storage Temperature	-65 to 150	°C	
T _{SL}	Lead Temperature (Soldering, 10 sec)	300	°C	

Note1: Test at T_A=25°C with the component mounted on 5*5mm, FR4, 2layer, Top and Bottom layer 1oz.

Recommended Operating Conditions

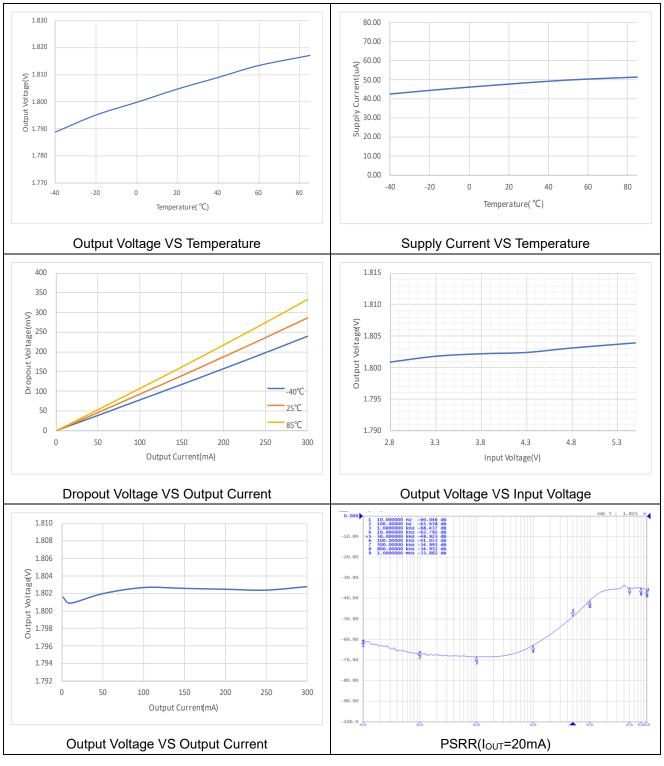
Symbol	Parameters	Rating	Unit
VIN	Input Voltage	1.7 to 5.5	V
Іоит	Output Current	0 to 300	mA
TA	Operating Ambient Temperature	-40 to 85	°C
CIN	Effective Input Ceramic Capacitor Value	0.47 to 4.7	μF
Соит	Effective Output Ceramic Capacitor Value	0.47 to 4.7	μF
ESR	Input and Output Capacitor Equivalent Series	5 to 100	m0
ESK	Resistance (ESR)	5 (0 100	mΩ

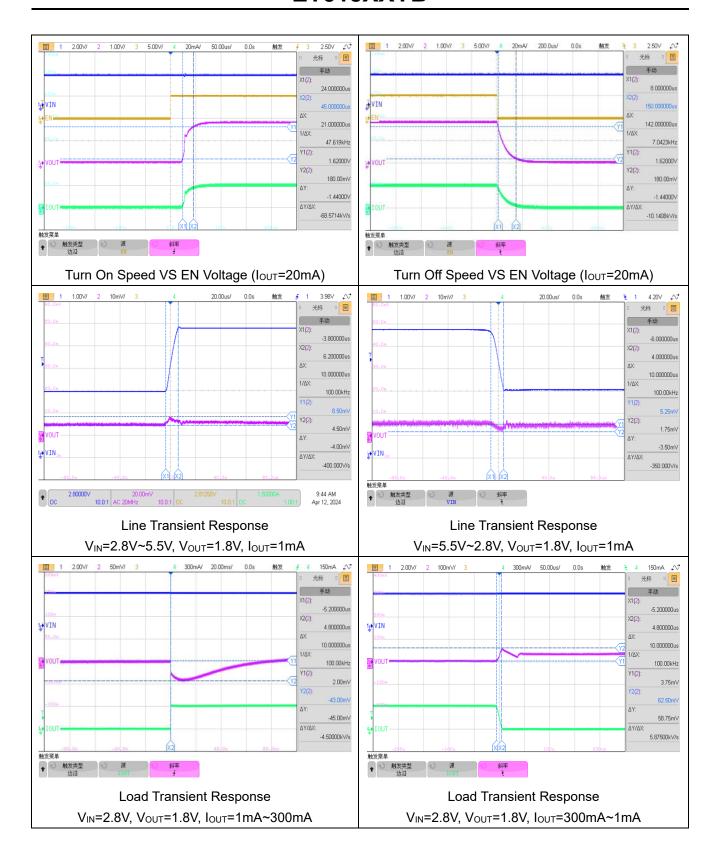
Electrical Characteristics

 $(V_{\text{IN}} = V_{\text{OUT}} + 1V, \ V_{\text{EN}} = 1.2V, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = 1 \mu \text{F}, \ C_{\text{OUT}} = 1 \mu \text{F}, \ T_{\text{A}} = 25^{\circ} \text{C}, \ unless \ otherwise \ stated})$

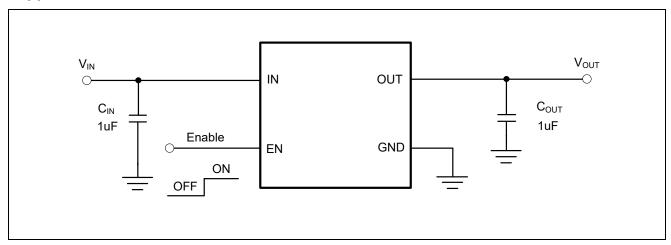
Symbol	Parameters	Conditions	Min	Тур	Max	Unit	
V _{IN}	Input Voltage Range (2)		1.7		5.5	V	
		Vout=1.2V, Iout=300mA		460	700	mV	
		Vout=1.8V, Iout=300mA		270	420	mV	
V_{DROP}	Dropout Voltage (3)	V _{OUT} =2.8V, I _{OUT} =300mA		230	345	mV	
		V _{OUT} =3.0V, I _{OUT} =300mA		220	340	mV	
		Vоит=3.3V, Iоит=300mA		210	330	mV	
I _{Q_ON}	Input Quiescent Current	Active mode: V _{EN} =V _{IN}		45	80	μA	
IQ OFF	Input Shutdown Current	V _{EN} =0V		0.01	1	μA	
Vouт	Regulated Output Voltage	I _{OUT} =1mA, -40°C≤T _A ≤85°C	-2		2	%	
Reg _{LINE}	Output Line Regulation	V _{IN} =V _{OUT} +1V to 5.5V, I _{OUT} =10mA		0.03	0.2	%/V	
Reg _{LOAD}	Output Load Regulation	I _{OUT} from 0mA to 300mA		20	40	mV	
ts	Soft-start Time	From enable to power on, V _{OUT} =1.8V		50		μs	
ILIMIT	Current Limit		300	650		mA	
Ishort	Short Current Limit	V _{OUT} =0V		70		mA	
	Power Supply	f=1kHz, Cout=1µF, Iout=20mA		70		dB	
PSRR	Rejection Ratio ⁽⁴⁾	f=10kHz, C _{OUT} =1µF, I _{OUT} =20mA		65			
en	Output Noise ⁽⁴⁾	10Hz to 100kHz, Cout=1µF		35		μV _{RMS}	
VIL	EN Low Threshold	V _{EN} Falling			0.4	V	
V _{IH}	EN High Threshold	V _{EN} Rising	0.9			V	
I _{EN}	EN Pin Input Current	V _{EN} =0V		0	0.1	μA	
R _{PD}	EN pull-down Resistance		0.8	1	1.3	ΜΩ	
R_{LOW}	Output Resistance of Auto Discharge at Off State	EN=0V, V _{IN} =4V, I _{OUT} =10mA		145		Ω	
T _{TSD}	Over-temperature Shutdown Threshold ⁽⁴⁾	T₃ rising		155		°C	
T _{HY} s	Over-temperature Shutdown Hysteresis ⁽⁴⁾	T₁ falling from shutdown		20		°C	

Note2: Here V_{IN} means internal circuit can work normal. If $V_{IN} < V_{OUT}$, Output voltage follow $V_N(I_{OUT}=1mA)$, circuit is safety. The maximum input voltage should take into account the maximum power consumption $(P_D(max))$. The minimum operating voltage is $V_{IN}(min) = V_{OUT} + V_{DROP}(max)$.

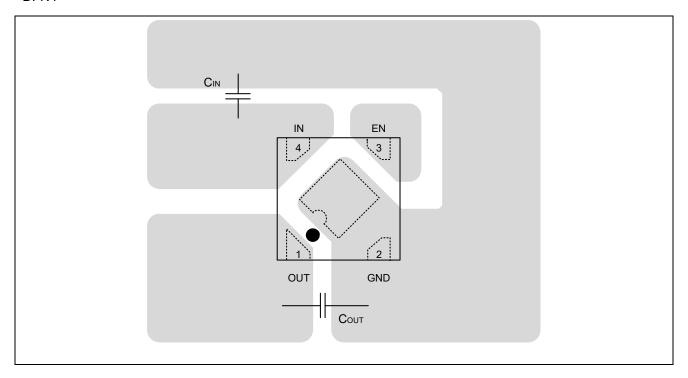

Note3. V_{DROP} FT test method: test the V_{OUT} voltage at V_{SET} + $V_{DROPMAX}$ with 300mA output current.


Note4. Guaranteed by design and characterization. not a FT item.

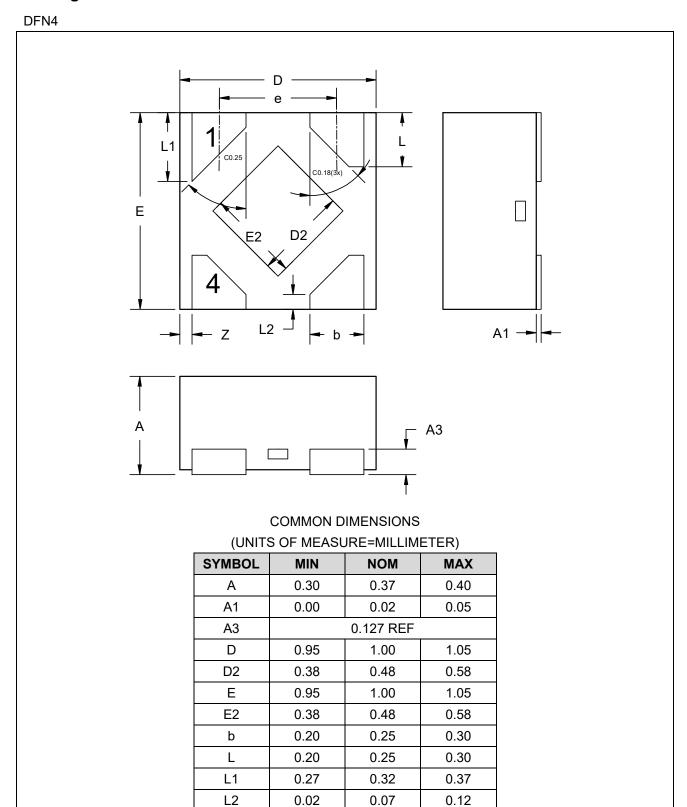
Typical Characteristics


(1) VOLTAGE VERSION 1.8V

 $(V_{IN}=2.8V; I_{OUT}=1 mA, C_{IN}=C_{OUT}=1.0 \mu F, unless otherwise noted. Typical values are at T_A=25 °C.)$



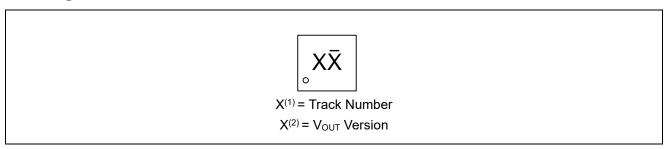
Application Circuits



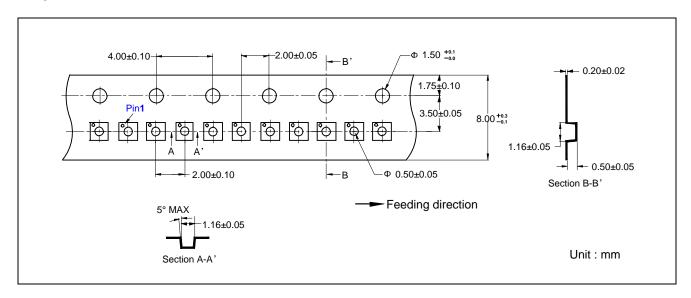
PCB Layout Guide

DFN4

Package Dimension


0.05 REF

0.65 REF


9

Z e

Marking

Tape Information

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
0.0	2023-08-08	Original Version	Tugz	Liuxm	Liujy
1.0	2024-05-08	Official Version	Tugz	Liuxm	Liujy