

ET51633BAM - High PSRR Low Noise 300mA LDO

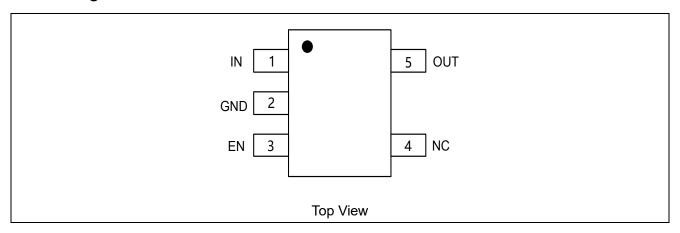
General Description

The ET51633BAM is the 300mA LDO with auto discharge function, It uses an advanced CMOS process and a PMOSFET pass device to achieve high power supply rejection ratio (PSRR), low noise, low dropout, low ground current, fast start-up and excellent output accuracy.

The ET51633BAM is stable with a 1.0µF ceramic output capacitor, uses a precision voltage reference and feedback loop to achieve excellent Regulation and transient response.

The ET51633BAM offered in a small SOT23-5 package and operates over an ambient temperature range of -40°C to +105°C.

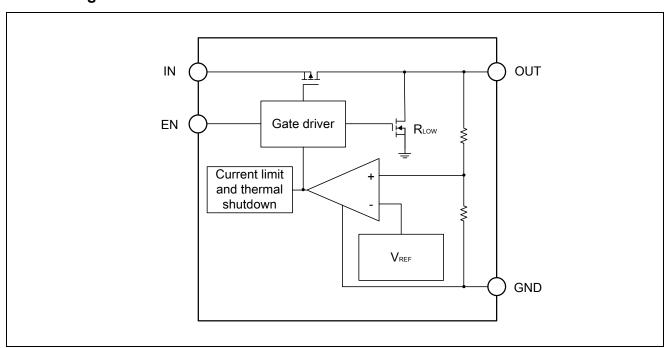
Features


- Wide Input Voltage Range from 1.9V to 5.5V
- Up to 300mA Load Current
- Standard Fixed Output Voltage 3.3V
- Very Low I_Q is 45μA typical
- Low Dropout is typical 180mV@3.3V at 300mA Load
- Very High PSRR: 75dB at 1KHz
- Very Low Noise is 60uVrms
- Auto discharge function
- Excellent Load/Line Transient Response
- Automotive AEC-Q100 Grade 2 Qualified
- Package Information:

Part No.	Package	MSL
ET51633BAM	SOT23-5	Level 1

Applications

- Automotive constant-voltage power supply
- Automotive infotainment and cluster


Pin Configuration

Pin Function

Pin No. Pin Name		Pin Function	
1	IN	Supply input pin. Must be closely decoupled to GND with a 1µF or greater ceramic capacitor	
		greater ceramic capacitor	
2	GND	Ground	
3	EN	Enable control input, active high. Do not leave EN floating	
4	NC	No connection.	
E	OUT	Output pin. A 1µF low-ESR capacitor should be connected to this pin to	
5	OUT	ground.	

Block Diagram

Functional Description

Input Capacitor

A 1µF ceramic capacitor is recommended to connect between VIN and GND pins to decouple input power supply glitch and noise. The amount of the capacitance may be increased without limit. This input capacitor must be located as close as possible to the device to assure input stability and less noise. For PCB layout, a wide copper trace is required for both VIN and GND.

Output Capacitor

An output capacitor is required for the stability of the LDO. The recommended output capacitance is from $0.47\mu F$ to $4.7\mu F$, Equivalent Series Resistance (ESR) is from $5m\Omega$ to $100m\Omega$, and temperature characteristics is X7R or X5R. Higher capacitance values help to improve load/line transient response. The output capacitance may be increased to keep low undershoot/overshoot. Place output capacitor as close as possible to OUT and GND pins.

ON/OFF Input Operation

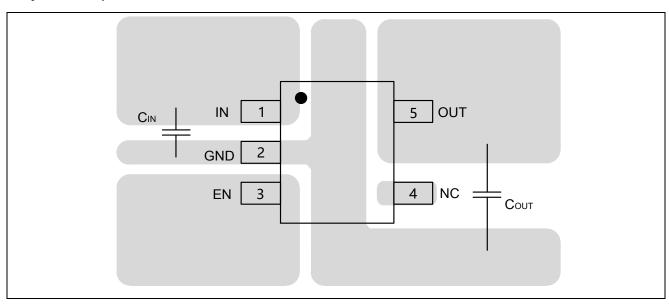
The ET51633BAM is turned on by setting the EN pin high, and is turned off by pulling it low. If this feature is not used, the EN pin should be tied to IN pin to keep the regulator output on at all time.

Ultra Fast Start-up

After enabled, the ET51633BAM is able to provide full power in as little as tens of microseconds, typically 80µs. This feature will help load circuitry move in and out of standby mode in real time.

Current Limit Protection

When output current at the OUT pin is higher than current limit threshold or the OUT pin, the current limit protection will be triggered and clamp the output current to approximately 500mA to prevent over-current and to protect the regulator from damage due to overheating.


Thermal shutdown Protection

Thermal protection disables the output when the junction temperature rises to approximately +155°C, allowing the device to cool down. When the junction temperature reduces to approximately +130°C the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the heat dissipation of the regulator, protecting it from damage due to overheating.

Layout Guidelines

- Place input and output capacitors as close to the device as possible.
- Use copper planes for device connections in order to optimize thermal performance.
- Place thermal vias around the device to distribute heat.

Layout Examples

Absolute Maximum Ratings

Symbol	Parameters (Items)	Value	Unit
V _{IN}	IN Voltage	-0.3 to 6.5	V
V _{EN}	Input Voltage (EN Pin)	-0.3 to V _{IN} +0.3	V
Vout	Output Voltage	-0.3 to V _{IN} +0.3	V
I _{MAX}	Maximum Load Current	500	mA
PD	Maximum Power Consumption	500	mW
ESD	Human Body Model (per AEC-Q100-002)	±4000	V
E9D	Charged Device Model (per AEC-Q100-011)	±1500	V
Rеја	Junction-to-ambient thermal resistance	250	°C/W
TJ	Operating Junction Temperature	-40 to 150	°C
T _{STG}	Storage Temperature	-65 to 150	°C
Tslod	Lead Temperature (Soldering, 10 sec)	300	°C

Recommended Operating Conditions

Symbol	Parameters	Rating	Unit
V _{IN} Input Voltage		1.9 to 5.5	V
Іоит	Output Current	0 to 300	mA
TA	Operating Ambient Temperature	-40 to 105	°C
CIN	Effective Input Ceramic Capacitor Value	0.47 to 4.7	μF
Соит	Effective Output Ceramic Capacitor Value	0.47 to 4.7	μF
ESR	Input and Output Capacitor Equivalent Series	5 to 100	mΩ
ESK	Resistance (ESR)	3 10 100	11177

Electrical Characteristics

 $V_{\text{IN}} = V_{\text{OUT}} + 1 V, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = C_{\text{OUT}} = 1 \mu \text{F}, \ T_{\text{A}} = -40 ^{\circ} \text{C} \sim 105 ^{\circ} \text{C}, \ unless otherwise noted}.$ Typical values are at $T_{\text{A}} = +25 ^{\circ} \text{C}.$

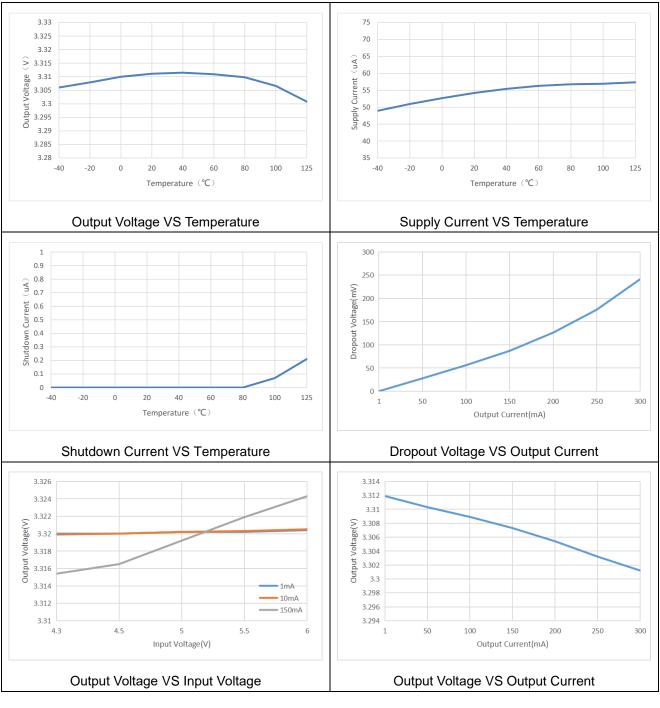
Symbol Parameters		Conditions	Min	Тур	Max	Unit
V _{IN} Input Voltage Range ⁽¹⁾			1.9		5.5	V
V_{DROP}	Dropout Voltage ⁽²⁾	V _{OUT} =3.3V, I _{OUT} =300mA		180	350	mV
I_{Q_ON}	Input Quiescent Current	Active mode: V _{EN} =V _{IN}		45	70	μA
I _{Q OFF}	Input Shutdown Current	V _{EN} =0V		0.01	1	μA
Vouт	Regulated Output Voltage	I _{OUT} =1mA, -40°C≤T _A ≤105°C -2			2	%
Δ\/	Output Voltage Line Regulation	$V_{IN}=V_{OUT}+1V$ to 5.5V, $I_{OUT}=10$ mA		0.03	0.2	%/V
ΔV out	Output Voltage Load Regulation	I _{OUT} from 0mA to 300mA		20	40	mV
Ts	Soft-start Time	From enable to power on		80		μs
I _{LIMIT}	Current Limit	R _{LOAD} =1Ω	300			mA
Ishort	Short Current Limit	Vout=0V		70		mA
D0DD	Power Supply Rejection	f=1kHz, C _{OUT} =1μF, Ι _{ΟUT} =20mA		75		dB
PSRR	Ratio ⁽³⁾	f=10kHz, C _{OUT} =1μF, I _{OUT} =30mA		65		dB
e _N	Output Noise ⁽³⁾	10Hz to 100kHz, Ι _{ουτ} =200mA, C _{ουτ} =1μF		60		μV _{RMS}
VIL	EN Low Threshold	V _{IN} =1.9V to 5.5V, V _{EN} falling until the output is disabled			0.3	V
ViH	EN High Threshold	V _{IN} =1.9V to 5.5V, V _{EN} rising until the output is enabled	1.2			V
I _{EN}	EN Pin Input Current	V _{EN} =5.5V		0	0.1	μA
R _{PD}	EN pull-down resistance		0.8	1	1.3	МΩ
R _{Low} Output resistance of auto		EN=0V, V _{IN} =4V, I _{OUT} =10mA		80		Ω
T_{TSD}	Over-temperature Shutdown Threshold ⁽³⁾	T _J rising		155		°C
T _{HYS}	Over-temperature Shutdown Hysteresis ⁽³⁾	T _J falling from shutdown		20		°C

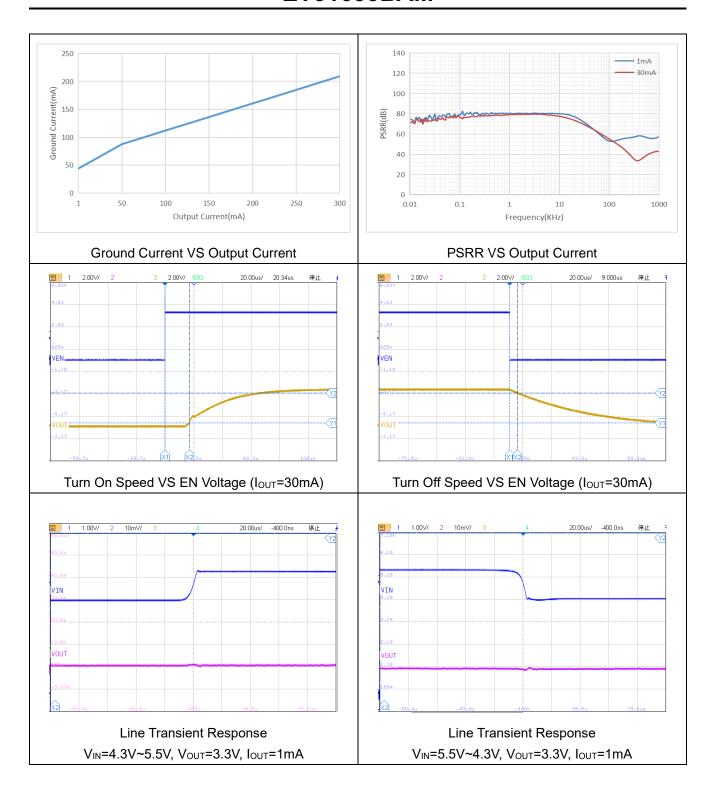
Electrical Characteristics (Continued)

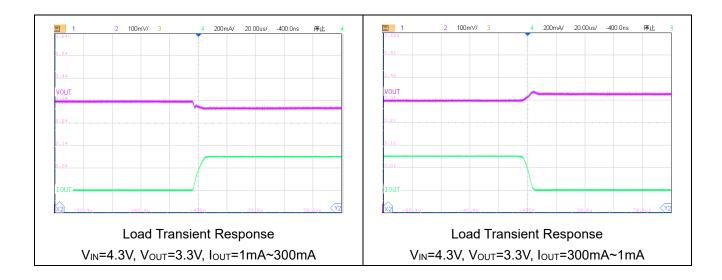
 $V_{IN} = V_{EN} = V_{OUT} + 1V, \ I_{OUT} = 1 mA, \ C_{IN} = C_{OUT} = 1 \mu F, \ T_A = -40 ^{\circ}C \sim 105 ^{\circ}C, \ unless \ otherwise \ noted.$

Typical values are at T_A = +25°C.

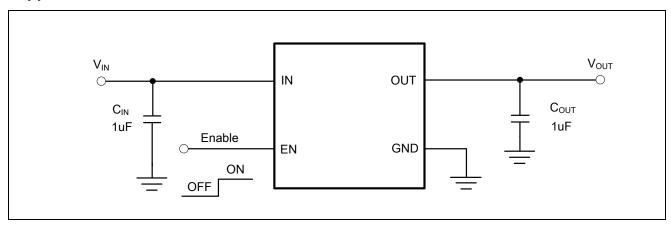
Symbol	Parameters	Conditions	Min	Тур	Max	Unit
TRANSIENT CHARACTERISTICS						
	Line transient	V _{IN} =4.3V to 5.5V in 10us		5		mV
A. ((2)	Line transient	V _{IN} =5.5V to 4.3V in 10us		5		mV
ΔV _{OUT} ⁽³⁾		I _{OUT} =1mA to 300mA in 10us		40		mV
	Load transient	I _{OUT} =300mA to 1mA in 10us		40		mV

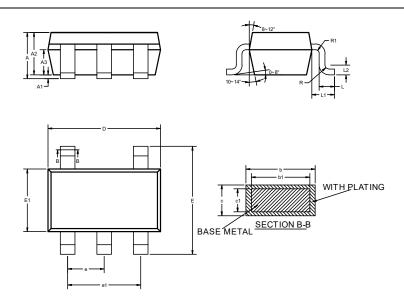

Note (1). Here V_{IN} means internal circuit can work normal. If $V_{IN} < V_{OUT}$, Output voltage follow $V_{IN}(I_{OUT} = 1 \text{mA})$, circuit is safety.


Note (2). VDROP FT test method: test the VOUT voltage at VOUT+VDROPMAX with 300mA output current.


Note (3). Guaranteed by design and characterization. not a FT item.

Typical Characteristics





Application Circuits

Package Dimension

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
Α	_	_	1.250
A1	0	_	0.150
A2	1.000	1.100	1.200
A3	0.600	0.650	0.700
b	0.360	_	0.450
b1	0.350	0.380	0.410
С	0.140	_	0.200
c1	0.140	0.150	0.160
D	2.826	2.926	3.026
Е	2.600	2.800	3.000
E1	1.526	1.626	1.726
е	0.900	0.950	1.000
e1	1.800	1.900	2.000
L	0.300	0.400	0.500
L1			
L2	0.250BSC		
R	0.050 —		0.200
R1	0.050	_	0.200

Revision History and Checking Table

Version	Date	Revision Item	Revision Item Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2022-12-07	Original Version	Yang Xiao Xu	Liuxm	Yang Xiao Xu