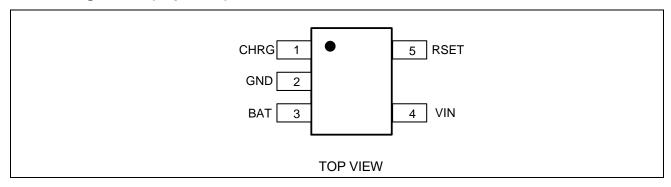


36V 600mA Linear Li-Ion Battery Charger IC

General Description

ET95164 is a linear charging management chip, Integrated trickle current, constant current and constant voltage three-stage linear charging management, comply with the charging standards for Li-lon battery. The charging input can directly draw power from the USB port, maximum rating input voltage 36V. The maximum charging current can reach up to 600mA, it can be programmed via an external resistor.

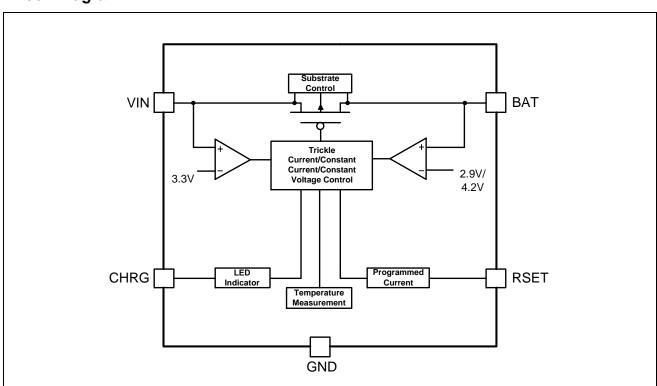
The trickle current of ET95164 is 15% of the programmed constant current, At the same time, charging will be terminated when the charging current drops below 12%, and the device will enter the fully charged state. ET95164 also supports charging short-circuited battery.


ET95164 integrates an anti-backflow circuit, The return current path of the battery is automatically cut off after the input voltage is pulled out or even short-circuited. At this point, only 0.6uA is consumed from the battery. ET95164 integrates a battery-free mode similar to LDO, that is when the battery is not connected, the average output voltage at the battery is 4.2V.

Features

- Programmable Up to 600mA Fast Charge Current
- 36V Maximum Rating for Input Voltage
- Over Voltage Protection Threshold: 6.1V
- Float voltage: 4.2V±50mV
- Built-in anti-backflow function. When no input is provided, it consumes only 0.6uA from the battery
- Compliant with the three-stage charging standard of trickle charge, constant current charge and constant voltage charge
- Integrated chip over temperature protection
- Integrated chip over voltage protection
- Charging status LED indicator
- Device and package Information:

Part No.	V _{FLOAT}	Package	Reel	MSL
ET95164	4.2V	SOT23-5	3k/Reel	3

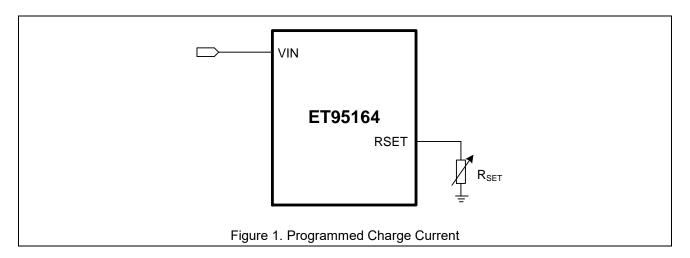

Pin Configuration(Top View)

Pin Function

Pin No.	Pin Name	Description	
1	CHRG	Constant current pull-down during charging.	
2	GND	GND. Connect to the system ground.	
3	BAT	Charging output, the battery terminal.	
4	VIN	Charging input.	
5	RSET	Fast Charge Current Program Pin. Shut down charge when the pin is pulled up.	

Block Diagram

Function Description


Overview

ET95164 is a linear charging management chip, Integrated trickle current, constant current and constant voltage three-stage linear charging management. The charging input can directly draw power from the USB port. Maximum input voltage: 36V. The maximum charging current can reach up to 600mA, it can be programmed via an external resistor.

Programming Fast Charge Current

The charge current of ET95164 can be programmed via an external resistor, like Figure 1, charge current can be estimated by following formula:

$$I_{BAT} = \frac{1000}{R_{SET}}$$

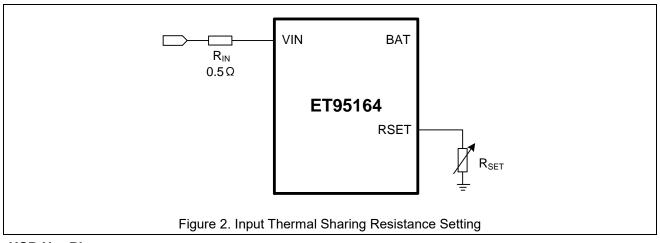
Charging Status Indicator

ET95164 supports LED to indicate the charging status. The CHRG pin integrates constant current control technology, eliminating the need for external current limiting, ensuring stable brightness of the indicator light.

Function	CHRG LED
Charging	Bright
Charge Terminated	Destroy
Input Over Voltage/Under Voltage	Destroy

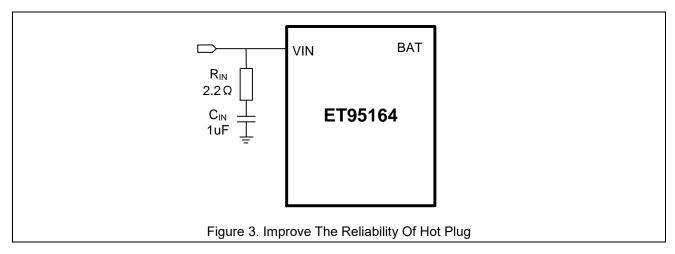
Enable Function

ET95164 can shut off charging by leaving the RSET pin externally floating. For example, the negative end of the RSET resistor is connected to the IO port of the MCU. During charging, the IO output is at a low level; when shutting off, the IO is set to high resistance or input.


Charge Current and Thermal Regulation

The ET95164 is equipped with a thermal limit function, which is designed to protect the chip from being damaged due to overheating. This also means that the charging current may not be the value set by the

formula $I_{BAT} = 1000 / R_{SET}$, When the chip temperature reaches 140°C, the charge current will be restricted by the temperature instead of following the aforementioned formula.


At this point, the heat can be shared by connecting a small resistor in series on the input path, thereby increasing the charging current. In other words, when there is a thermal limit, connecting a resistor in series on the input path can actually increase the charging current. It should be noted that the power rating of the connected resistor must meet the requirements.

The value of this resistor needs to be determined based on actual measurements, as it is related to the actual heat dissipation capacity of the PCB.

USB Hot Plug

Although the input voltage withstand capability of ET95164 reaches 36V, when it is connected to a voltage of 20V or higher, such as when the USB-C port of a computer is hot-swapped, the VIN pin will observe ringing voltage. This voltage may be much higher than the chip's tolerance range and cause the chip to be damaged. In order to suppress such ringing voltages, like Figure 3, The input capacitor should be an electrolytic capacitor, or a surface mount capacitor connected in series with a small resistor.

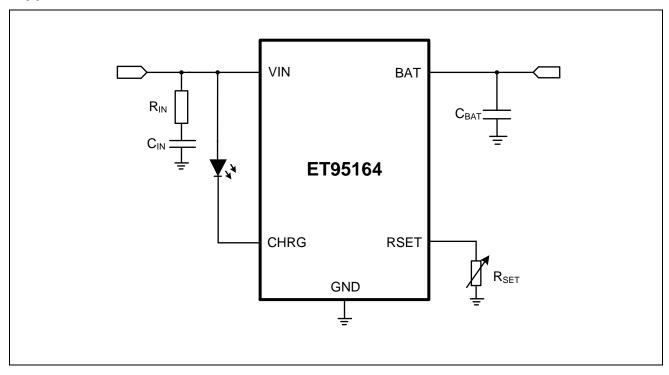
Absolute Maximum Ratings

Exceeding the following limits will cause permanent damage to the chip.

Symbol	Symbol Parameter		Max	Unit
	VIN/CHRG to GND	GND-0.3	GND+36	V
V_{PIN}	BAT to GND	GND-5	GND+10	V
	RSET to GND	GND-0.3	GND+6.5	V
TJ	Maximum Junction Temperature	-40	+150	°C
T _{STG}	Storage Temperature Range	-65	+150	°C
θЈА	Thermal Resistance from		160	°C/W
	Junction-to-Ambient		160	C/VV
V _{ESD}	Human Body Model		±2000	V

Recommended Operating Conditions

Beyond the scope of the above-mentioned work, the performance of the chip will deteriorate.


Symbol	Characteristic	Min	Max	Unit
V _{IN}	Input Voltage	4.5	5.5	V
I _{BAT}	Maximum Charge Current		600	mA
T _A	Operating Ambient Temperature Range	-40	+85	°C

Electrical Characteristics

 V_{IN} =5V, T_{A} =25°C for typical values (unless otherwise noted).

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vin	Input Voltage Range		4.5	5.0	5.5	V
lin	Chip Power Consumption	Full Charge		80		uA
V _{FLOAT}	Floating Charge Voltage	V _{IN} =5V,I _{CHG} become 0mA	-50mV	4.20	+50mV	V
		Charging, R _{SET} =10k Ω	90	100	110	mA
l	Current of BAT Pin	Charging, R_{SET} =2 $k\Omega$	450	500	550	mA
I _{BAT}	Cullent of BAT Fill	Full Charge		-5		uA
		V _{IN} =0V		-0.6	-0.9	uA
V_{TRKL}	Trickle Current Threshold	R_{SET} =10k Ω , Measure when V_{BAT} rises	2.8	2.9	3.0	V
	T: 11 0	R _{SET} =10kΩ, V _{BAT} =2.6V	10	15	20	mA
I _{TRKL}	Trickle Current	$R_{SET}=2k\Omega$, $V_{BAT}=2.6V$	70	80	95	mA
	Input Under Voltage Threshold	Measure when V _{IN} rises	3.0	3.3	3.6	V
V _{UV}	V _{UV} Hysteresis	Measure when V _{IN} decreases, Record the difference		0.2		V
V	Input Over Voltage Threshold	Measure when V _{IN} rises	5.8	6.1	6.4	V
V _{ov}	Vov Hysteresis	Measure when V _{IN} decreases, Record the difference		0.2		V
V _{ASD}	V _{IN} -V _{BAT} Startup Threshold	V _{BAT} =3.7V, Measure when V _{IN} rises		150		mV
V ASD	V _{IN} -V _{BAT} Shutdown Threshold	$V_{BAT}{=}3.7V, \\$ Measure when V_{IN} decreases		100		mV
1	Termination Current	$R_{SET}=10k\Omega$		12		mA
I _{TERM}	Threshold	R _{SET} =2kΩ		60		mA
VRECHG	Battery Recharging Threshold	Vfloat-Vrechg	150			mV
Tcc	Over Temperature Protection Threshold			140		°C
I _{LED}	LED Lighting Current	V _{CHRG} =0.5V	3.0	5.0	7.0	mA

Application Circuit



BOM list

Symbol	Characteristic	Requirement	
C	Input voltage stabilizing capacitor	105 or larger in capacitance surface-mount	1
Cin	input voltage stabilizing capacitor	capacitors, with a voltage rating of 25V or higher	I
C	Output voltage stabilizing	105 or larger in capacitance surface mount	1
Сват	capacitor	capacitors	!
Rın	Anti-surge resistor	2.2Ω	1
RSET	Current setting resistor	1% Precision SMD Resistor	1

Package Dimension

SOT23-5

Dimensions Table (Units:mm)

Symbol	Min	Max
Α	1.050	1.250
A1	0.000	0.100
b	0.300	0.400
С	0.100	0.200
D	2.820	3.020
Е	2.650	2.950
E1	1.500	1.700
e	e 0.950 BSC	
e1	1.800	2.000
L	0.300	0.600
L1	0.700	BSC

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2025-6-16	Official Version	Licx	Xiayj	Liujy