

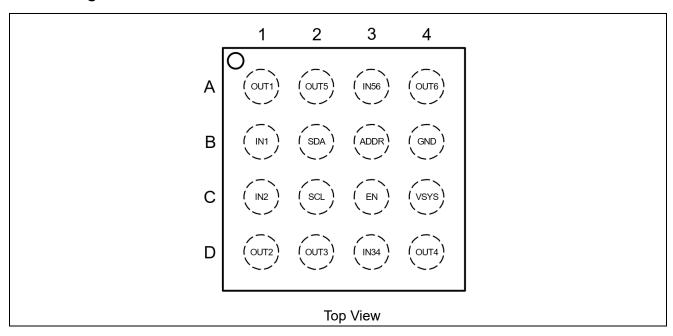
ET3166 - 6 CH Load Switch with I²C Control

General Description

The ET3166 is CMOS-based 6 channels integrated load switch with I²C Control. Load switch 1 to 6 contains P-Channel MOSFET that can operate over an input voltage of 1.2V to 5.5V and supports a maximum continuous current of 2A.

The ET3166 is available in small package: WLCSP16 (1.54mm×1.54mm,0.35mm pitch).

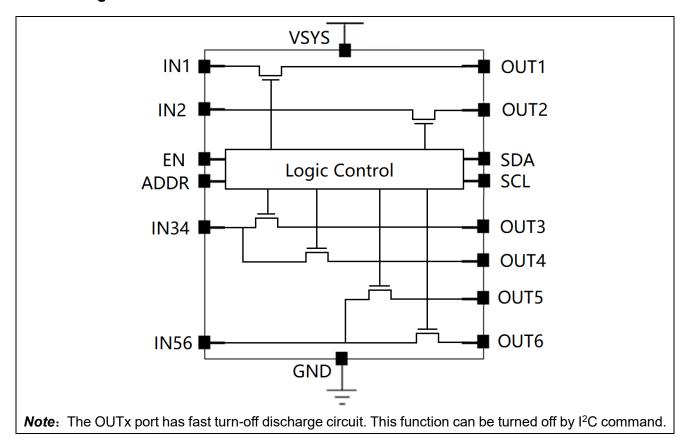
Features


- Load switch 1 to 6 input voltage operating range: 1.2V to 5.5V
- Load switch 1 to 6 typical R_{DS(ON)}:
 - $52m\Omega$ at $V_{INX} = 5V$
 - $120m\Omega$ at $V_{INX} = 1.8V$
- V_{SYS} input voltage operation range: 1.6V to 5.5V
- I2C serial control to program each load switch on/off
- Part No. and package

Part No.	Package	MSL
ET3166	WLCSP16 (1.54×1.54mm,0.35mm pitch)	Level 1

Applications

- Constant-voltage power supply for battery-powered device
- Constant-voltage power supply for smartphones, tables
- Constant-voltage power supply for cameras, DVRs, STB and camcorders


Pin Configuration

Pin Function

Pin No.	Pin Name	Pin Function		
A1	OUT1	Load switch 1 output.		
A2	OUT5	Load switch 5 output.		
A3	IN56	Load switch 5 and 6 supply input.		
A4	OUT6	Load switch 6 output.		
B1	IN1	Load switch 1 supply input.		
B2	SDA	I ² C interface.		
В3	ADDR	I ² C address set pin.		
B4	GND	Ground pin.		
C1	IN2	Load switch 2 supply input.		
C2	SCL	I ² C interface.		
C3	EN	Load switch output Enable(active high), Device will reset all registers to default value when EN pin is low.		
C4	VSYS	System Supply input.		
D1	OUT2	Load switch 2 output.		
D2	OUT3	Load switch 3 output.		
D3	IN34	Load switch 3 and 4 supply input.		
D4	OUT4	Load switch 4 output.		

Block Diagram

Functional Description

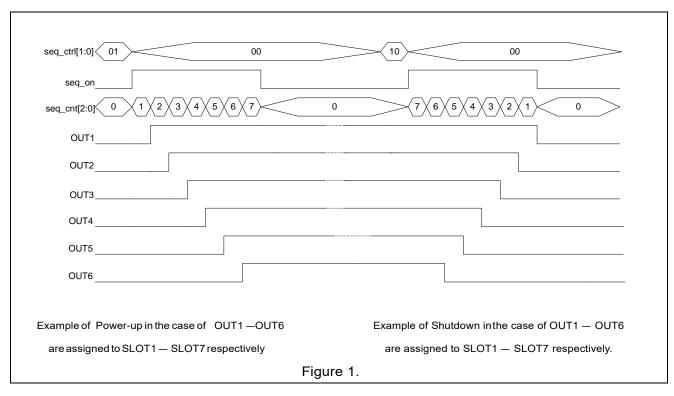
ET3166 has 6 channels load switch. Load switch 1 to 6 are using PMOSFET.

Startup

The ET3166 LDSW's can be enabled two ways using the I²C register bits if EN is high.

- 1. Setting LDSWX_SEQ = 000 in 0x05(LDSW12_SEQ) or 0x06(LDSW34_SEQ) or 0x07(LDSW56_SEQ) and the LDSWX_EN assigned to the LDSW in register, ENABLE to 1.
- 2. Setting LDSWX_SEQ > 000 in registers and then set seq_ctrl[1:0] = 2'b01 in SEQ_CTR register.

Power-up and shut down of each regulator can be controlled by an I²C register. It can be set at the registers Idswx_seq[2:0] (x=1 to 7) respectively. Idswx_en is an internal signal to enable one of regulators, if Idsw_seq[2:0] set to '000', that LDSWX channel can be controlled directly by a bit specified in register LDSW_EN.


3. Automatic Power Up/Down Sequence Control

ET3166 has seven SLOTs to which each regulator can be assigned;

They are started by seq_ctrl[1:0] signal. when seq_ctrl[1:0] is set '01'. Internal counter seq_cnt[2:0] starts increments from 0 ("000") to 7 ("111"). When seq_ctrl[1:0] is set '10', seq_cnt[2:0] decrements from 7 ("111") to 0 ("000"). Regulators assigned to one of SLOTs starts power-up or power-down.

The seq_cnt[2:0] matches the SLOT number, when seq_cnt[2:0]=000, it indicates that sequencing has completed or not started.

Internal logic signal seq_on=1 indicates that sequencing is executing and somewhere between the start of slot1 and the end of slot7, seq_on=0, it indicates that has completed or not started.

4. EN Pin Control

When EN pin is in low level, the IC is shut down, all internal circuits are off, and all the parts draw very little current. In this state, all the registers will be reset to their default value, and I²C cannot be written to or read.

Input and output Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into a discharged load capacitor or short-circuit, a capacitor must be placed between the V_{INX} and GND pins. A 1 μ F ceramic capacitor, C_{INX} , placed close to the pins is usually sufficient. Higher-value C_{INX} can be used to reduce the voltage drop in higher-current applications.

A $0.1\mu F$ capacitor, C_{OUTX} , should be placed between the V_{OUTX} and GND pins. This capacitor prevents parasitic board inductance from forcing V_{OUTX} below GND when the switch is on. C_{INX} greater than C_{OUTX} is highly recommended. C_{OUTX} greater than C_{IN} can cause V_{OUTX} to exceed V_{INX} when the system supply is removed. This could result in current flow through the body diode from V_{OUTX} to V_{INX} .

Recommended C_{VSYS}=1.0uF or greater.

Auto Discharging

For each channel, when shut down the output, the Auto-Discharging circuit will be turned on to discharge the electric charge on output capacitor, and decrease the voltage of output pin in very short time. The Auto-Discharging function is optional. Set related bits to select output discharge function for Discharge

Resistor (LDSW DIS Register), "0": Disable. "1": Enable.

RCB function

ET3166 has a true Reverse Current function that obstructs unwanted reverse current from OUTx to INx during both ON and OFF states. The RCB function can be set by I²C instruction(LDSW_RCB register).

LSWx state	ldswx_rcb	RCB function
OFF	0	Υ
OFF	1	Υ
ON	0	N
ON	1	Y

Note: x is 1~6.

LSWx state is controlled by EN pin or LDSW_EN Register.

Serial Port Interface (I²C)

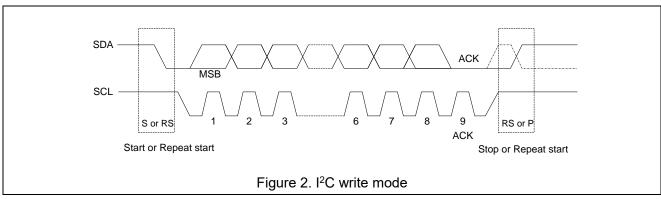
Bus Interface

Baseband Processor can transmit data with ET3166 each other through SDA and SCL port. SDA and SCL composite bus interface, and a pull-up resistor to the power supply should be connected.

Data Validity

When the SCL signal is high, the data of SDA port is valid and stable. Only when the SCL signal is low, the level on the SDA port can be changed.

Start (Re-start) and Stop Working Conditions


When the SCL signal is high, SDA signal from high to low represents start or re-start working conditions, while the SCL signal is high, SDA signal from low to high represents stop working conditions.

Byte format

Each byte of data line contains 8 bits, which contains an acknowledge bit. The first data is transmitted MSB.

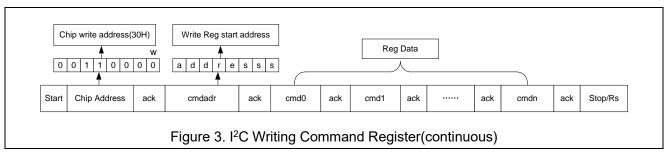
Acknowledge

During the writing mode, ET3166 will send a low level response signal with one period width to the SDA port. During the reading mode, ET3166 will not send response signal and the host will send a high response signal one period width to the SDA.

ACK=Acknowledge

MSB=Most Significant Bit

S=Start Conditions RS=Restart Conditions P=Stop Conditions


Fastest Transmission Speed =400kHz

Restart: SDA-level turnover as expressed by the dashed line waveform

7bit Chip Address:

Address	ADDR Pin Set
0011000b	ADDR connect to GND
0011001b	ADDR connect to VSYS

PC Writing Command Register Interface Protocol (continuous):

ACK=Acknowledge

Start=Start Conditions

Chip address=Write register address =0011000+0(w)b

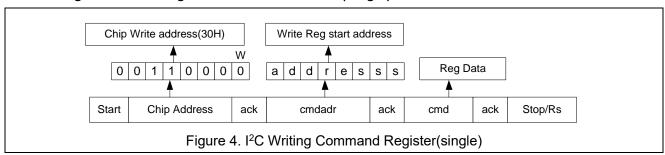
ack=Acknowledge

Write Reg start address byte = cmdadr(x+ REG's 7bit address)

ack=Acknowledge

Reg data 0 = cmd0(Command data0)

ack=Acknowledge


.....

Reg data n =cmdn(Command datan)

ack=Acknowledge

Stop/Rs=Stop Condition/Restart Condition

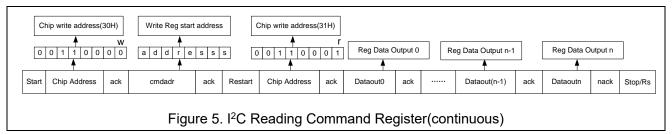
PC Writing Command Register Interface Protocol (single):

Start=Start Conditions

Chip address = Write register address = 0011000+0(w)b

ack=Acknowledge

Write Reg start address byte = cmdadr(x + REG's 7bit address)


ack=Acknowledge

Reg data= cmd(Command data)

ack=Acknowledge

Stop/Rs=Stop Condition/Restart Condition

PC Reading Command Register Interface Protocol (continuous)

Start=Start Conditions

Chip address =Write register address=0011000+0(w)b

ack=Acknowledge from ET3166

Write Reg start address byte = cmdadr(x + REG's 7bit address)

ack=Acknowledge from ET3166

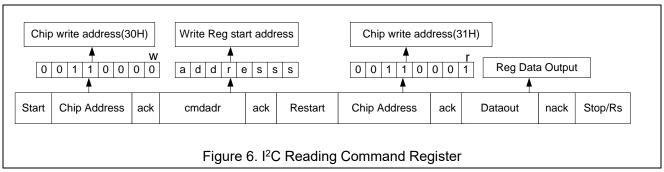
Restart=Restart condition

Chip address Read register address=0011000+1(r)b

ack=Acknowledge from ET3166

Dataout0=Register data output 0

ack=Acknowledge from Host


.....

Dataoutn=Register data output n

nack=No Acknowledge from Host

Stop/Rs=Stop Condition/Restart Condition

PC Reading Command Register Interface Protocol (single)

Start=Start Conditions

Chip address =Write register address=0011000+0(w)b

ack=Acknowledge from ET3166

Write Reg start address byte = cmdadr(x + REG's 7bit address)

ack=Acknowledge from ET3166

Restart=Restart condition

Chip address Read register address=0011000+1(r)b

ack=Acknowledge from ET3166

Dataout=Register data output

nack=No Acknowledge from Host

Stop/Rs=Stop Condition/Restart Condition

Register Map

Addr	Name	RST	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x00	CHIPID	0x30				001100			chip_id[1:0]		
0x01	VERID	0x00				000000			ver_id[1:0]		
0x02	LDSW_EN	0x00	0	0	ldsw6_en	ldsw5_en	ldsw4_en	ldsw3_en	ldsw2_en	ldsw1_en	
0x03	LDSW_DIS	0x3F	0	0	ldsw6_dis	ldsw5_dis	ldsw4_dis	ldsw3_dis	ldsw2_dis	ldsw1_dis	
0x04	LDSW_TR0	0x00	0	0	ldsw6_tr0	ldsw5_tr0	ldsw4_tr0	ldsw3_tr0	ldsw2_tr0	ldsw1_tr0	
0x05	LDSW12_SEQ	0x00	0	0	0 ldsw2_seq[2:0]				ldsw1_seq[2:0]		
0x06	LDSW34_SEQ	0x00	0	0		ldsw4_seq[2:0]			ldsw3_seq[2:0]		
0x07	LDSW56_SEQ	0x00	0	0		ldsw6_seq[2:0]			ldsw5_seq[2:0]		
0x08	SEQ_CTR	0x00	seq_sp	eed[1:0]	seq_c	trl[1:0]	seq_on		seq_cnt[2:0]		
0x09	LDSW_TR1	0x00	0	0	ldsw6_tr1	ldsw5_tr1	ldsw4_tr1	ldsw3_tr1	ldsw2_tr1	ldsw1_tr1	
0x0A	LDSW_RCB	0x00	0	0	ldsw6_rcb	ldsw5_rcb	ldsw4_rcb	ldsw3_rcb	ldsw2_rcb	ldsw1_rcb	
0x0B	LDSW_STA	0x00	0	0	ldsw6_sta	ldsw5_sta	ldsw4_sta	ldsw3_sta	ldsw2_sta	ldsw1_sta	
0x69	SOFTRST_CTR	0x00		V	Vrite B0H to this	s register can re	eset all the regis	sters to their de	fault value		

Note: Rev.—Reserve, keep "0".

Register description

0x00 CHIPID Register---- Indicates the product ID with revision. Default = 0x30

chip_id[1:0] Indicates the product ID with revision. Read only.

0x01 VERID Register---- Indicates the device ID with revision. Default = 0x00

ver_id[1:0] Indicates the device ID with revision. Read only.

0x02 LDSW_EN Register ----LDSWs enable control register. Default = 0x00

Load Switch enable control register by I²C while the register value of ldswx_seq[2:0] are set to be default "000". This register can be written to enable or disable the corresponding LDSW regulator.

Bit	Name	Default	Type	Description
7	Rev.	0	R	Reserved
6	Rev.	0	R	Reserved
5	ldsw6_en	0	R/W	LDSW6 enable control: 0b:Disable 1b: Enable
4	ldsw5_en	0	R/W	LDSW5 enable control: 0b:Disable 1b: Enable
3	ldsw4_en	0	R/W	LDSW4 enable control: 0b:Disable 1b: Enable

2	ldsw3_en	0	R/W	LDSW3 enable control: 0b:Disable	1b: Enable
1	ldsw2_en	0	R/W	LDSW2 enable control: 0b:Disable	1b: Enable
0	ldsw1_en	0	R/W	LDSW1 enable control: 0b:Disable	1b: Enable

0x03 LDSW_DIS Register ---- Discharge Resistor Selection. Default = 0x3F

Each LDSW regulators output discharge resistor enable control.

Bit	Name	Default	Туре	Description
7	Rev.	0	R	Reserved
6	Rev.	0	R	Reserved
				LDSW6 Discharge Enabled/Disabled control :
				0b: Disable
				Pull down will not be activated when LDSW6 is disabled by any
5	ldsw6_dis	1	R/W	event
				1b: Enable
				Pull down will be activated when LDSW6 is disabled by
				EN going low or ldsw6_en=0 or a Sequenced shutdown
				LDSW5 Discharge Enabled/Disabled control :
				0b: Disable
				Pull down will not be activated when LDSW5 is disabled by any
4	ldsw5_dis	1	R/W	event
				1b: Enable
			Pull down will be activated when LDSW5 is disabled by	
				EN going low or ldsw5_en=0 or a Sequenced shutdown
				LDSW4 Discharge Enabled/Disabled control :
				0b: Disable
				Pull down will not be activated when LDSW4 is disabled by any
3	ldsw4_dis	1	R/W	event
				1b: Enable
				Pull down will be activated when LDSW4 is disabled by EN going
				low or ldsw4_en=0 or a Sequenced shutdown
				LDSW3 Discharge Enabled/Disabled control :
				0b: Disable
				Pull down will not be activated when LDSW3 is disabled by any
2	ldsw3_dis	1	R/W	event
				1b: Enable
				Pull down will be activated when LDSW3 is disabled by
				EN going low or ldsw3_en=0 or a Sequenced shutdown
				LDSW2 Discharge Enabled/Disabled control :
				0b: Disable
1	1 Idsw2_dis	1	R/W	Pull down will not be activated when LDSW2 is disabled by any
				event
				1b: Enable
				Pull down will be activated when LDSW2 is disabled by

				EN going low or ldsw2_en=0 or a Sequenced shutdown
				LDSW1 Discharge Enabled/Disabled control :
				0b: Disable
				Pull down will not be activated when LDSW1 is disabled by any
0	ldsw1_dis	1	R/W	event
				1b: Enable
				Pull down will be activated when LDSW1 is disabled by
				EN going low or ldsw1_en=0 or a Sequenced shutdown

$0x04/09H\ LDSW_TR0/1\ Register$ ----Load Switch output voltage rise timing Selection. Default = 0x00

 V_{INX} =3.3V, R_L =150 Ω , C_L =0.1 μF

Bit	Name	Default	Туре	Description
7	Rev.	00/00	R	Reserved
6	Rev.	00/00	R	Reserved
				LDSW6 output voltage (from 10% to 90%) rise time setting
5	ldsw6_tr1	00	R/W	control:
5	ldsw6_tr0	00	R/VV	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us
				LDSW5 output voltage (from 10% to 90%) rise time setting
4	ldsw5_tr1	00	R/W	control:
4	ldsw5_tr0	00	R/VV	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us
				LDSW4 output voltage (from 10% to 90%) rise time setting
_	ldsw4_tr1	00	D 447	control:
3	ldsw4_tr0	00	R/W	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us
				LDSW3 output voltage (from 10% to 90%) rise time setting
	ldsw3_tr1	00	D 447	control:
2	ldsw3_tr0	00	R/W	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us
				LDSW2 output voltage (from 10% to 90%) rise time setting
4	ldsw2_tr1	00	R/W	control:
1	ldsw2_tr0	00	R/VV	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us
				LDSW1 output voltage (from 10% to 90%) rise time setting
	ldsw1_tr1	00	R/W	control:
0	ldsw1_tr0	00	K/VV	00b: 340us 01b: 32us
				10b: 150us 11b: 1000us

0x05 LDSW12_SEQ Register ---- Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of LDSW1/2 regulator can be set at any one of the slots.

Bit	Name	Default	Туре		Description	
7:6	Rev.	00	R	Reserved		
				LDSW2 Control select	table	
				ldsw2_seq[2:0]	VOUT2	
				000	Controlled by I ² C register Idsw2_en	
				001	Slot1	
				010	Slot2	
5:3	ldsw2_seq[2:0]	000	R/W	011	Slot3	
				100	Slot4	
				101	Slot5	
				110	Slot6	
				111	Slot7	
				LDSW1 Control select	table	
				ldsw1_seq[2:0]	VOUT1	
				000	Controlled by I ² C register Idsw1_en	
				001	Slot1	
				010	Slot2	
2:0	ldsw1_seq[2:0]	000	R/W	011	Slot3	
				100	Slot4	
				101	Slot5	
				110	Slot6	
				111	Slot7	

0x06 LDSW34_SEQ Register ---- Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDSW3/4 regulator can be set at any one of the slots.

Bit	Name	Default	Туре		Description
7:6	Rev.	00	R	Reserved	
				LDSW4 Control selec	ct table
				ldsw4_seq[2:0]	VOUT4
				000	Controlled by I ² C register Idsw4_en
				001	Slot1
				010	Slot2
5:3	ldsw4_seq[2:0]	000	R/W	011	Slot3
				100	Slot4
				101	Slot5
				110	Slot6
				111	Slot7
				LDSW3 Control selec	ct table
				ldsw3_seq[2:0]	VOUT3
				000	Controlled by I ² C register Idsw3_en
				001	Slot1
				010	Slot2
2:0	ldsw3_seq[2:0]	000	R/W	011	Slot3
				100	Slot4
				101	Slot5
				110	Slot6
				111	Slot7

0x07 LDSW56_SEQ Register ---- Power sequence setting register. Default = 0x00

Power sequence setting register. there are 7 time slots defined as following table. The power-up sequence is start from slot1 to slot7, and shut down start from slot7 to slot1. Power-up and shut down of each LDSW5/6 regulator can be set at any one of the slots.

Bit	Name	Default	Туре	Description				
7:6	Rev.	00	R	Reserved				
				LDSW6 Control select table				
				ldsw6_seq[2:0]	VOUT6			
				000	Controlled by I ² C register Idsw6_en			
				001	Slot1			
			D 444	010	Slot2			
5:3	ldsw6_seq[2:0]	000	R/W	011	Slot3			
				100	Slot4			
				101	Slot5			
				110	Slot6			
				111	Slot7			
				LDSW5 Control selec	t table			
				ldsw5_seq[2:0]	VOUT5			
				000	Controlled by I ² C register Idsw5_en			
				001	Slot1			
			D 444	010	Slot2			
2:0	ldsw5_seq[2:0]	000	R/W	011	Slot3			
				100	Slot4			
				101	Slot5			
				110	Slot6			
				111	Slot7			

0x08 SEQ_CTR Register ---- Power sequence setting and status register. Default = 0x00

Bit	Name	Default	Туре	Description			
				Define the slot period as following:			
				Register Value	Slot period(ms)		
	17.4 63		544	00	0.5		
7:6	7:6 seq_speed[1:0]	00	R/W	01	1.0		
				10	1.5		
				11	2.0		
				Enables power-up or	r shut down of SEQ:		
				Register Value	Slot period(ms)		
5:4	000 otrl[1:0]	00	W/C	00	Default		
5.4	seq_ctrl[1:0]	00	W/C	01	Starts an LDSW power up sequence		
				10	Starts an LDSW shutdown sequence		
				11	Bit configuration is ignored		

13

				Note: The bits will always clear immediately when written to				
				and always read back 00.				
				Indicates the ac	tivation signal of SEQ.			
				0b: Indicates that	at the sequencing is not in process			
3	cog on	0	R	1b: Indicates that	at the sequencing is executing and somewhere			
3	seq_on		IX.	between the st	art of slot 1 and the end of slot 7. The bit			
				remains a 1 unt	il slot 7 has completed at start-up or slot 1 has			
				finished at shute	down, regardless of what slots are used.			
				Indicates the slot number of SEQ at the moment:				
				Register				
					SEO Countor			
				Value	SEQ Counter			
				Value 000	SEQ Counter Sequencing has completed or not started.			
				7 011 01 0	·			
2:0	sea cnt[2:0]	000	R	000	Sequencing has completed or not started.			
2:0	seq_cnt[2:0]	000	R	000	Sequencing has completed or not started. Indicates was in slot 1 during register read			
2:0	seq_cnt[2:0]	000	R	000 001 010	Sequencing has completed or not started. Indicates was in slot 1 during register read Indicates was in slot 2 during register read			
2:0	seq_cnt[2:0]	000	R	000 001 010 011	Sequencing has completed or not started. Indicates was in slot 1 during register read Indicates was in slot 2 during register read Indicates was in slot 3 during register read			
2:0	seq_cnt[2:0]	000	R	000 001 010 011 100	Sequencing has completed or not started. Indicates was in slot 1 during register read Indicates was in slot 2 during register read Indicates was in slot 3 during register read Indicates was in slot 4 during register read			
2:0	seq_cnt[2:0]	000	R	000 001 010 011 100 101	Sequencing has completed or not started. Indicates was in slot 1 during register read Indicates was in slot 2 during register read Indicates was in slot 3 during register read Indicates was in slot 4 during register read Indicates was in slot 5 during register read			

0x0A LDSW_RCB Register ----RCB Function Selection. Default = 0x00

This register enables the function blocking the current of load switch when the output voltage is higher than input.

Bit	Name	Default	Type	Description	
7	Rev.	0	R	Reserved	
6	Rev.	0	R	Reserved	
5	ldsw6_rcb	0	R/W	LDSW6 reverse current blocking function:	
3	IdSW0_ICD	U	IN/VV	0b:Disable 1b: Enable	
4	ldsw5_rcb	0	R/W	LDSW5 reverse current blocking function:	
4	IdSW3_ICD	U	17/77	0b:Disable 1b: Enable	
3	ldsw4_rcb	0	R/W	LDSW4 reverse current blocking function:	
3	IdSW4_ICD	U	17/77	0b:Disable 1b: Enable	
2	ldsw3_rcb	0	R/W	LDSW3 reverse current blocking function:	
	IdSW3_ICD	U	17/77	0b:Disable 1b: Enable	
1	ldsw2_rcb	0	R/W	LDSW2 reverse current blocking function:	
!	IdSWZ_ICD	U	17,77	0b:Disable 1b: Enable	
0	ldsw1_rcb	0	R/W	LDSW1 reverse current blocking function:	
U	IUSW I_ICD	U	11/11	0b:Disable 1b: Enable	

0x0B LDSW_STA Register ----LDSW Status Register. Default = 0x00

Bit	Name	Default	Type	Description
7	Rev.	0	R	Reserved
6	Rev.	0	R	Reserved
				LDSW6 Status Bit:
5	ldsw6_sta	0	R	0b:Turn off Status
				1b: Turn on Status
				LDSW5 Status Bit:
4	ldsw5_sta	0	R	0b:Turn off Status
				1b: Turn on Status
				LDSW4 Status Bit:
3	ldsw4_sta	0	R	0b:Turn off Status
				1b: Turn on Status
				LDSW3 Status Bit:
2	ldsw3_sta	0	R	0b:Turn off Status
				1b: Turn on Status
				LDSW2 Status Bit:
1	ldsw2_sta	0	R	0b:Turn off Status
				1b: Turn on Status
				LDSW1 Status Bit:
0	ldsw1_sta	0	R	0b:Turn off Status
				1b: Turn on Status

0x69 SOFTRST_CTR Register ----Software Reset Signal. Default = 0x00

Write B0H to this register will be produced a reset signal, this signal will reset all the registers to the default value.

E	3it	Name	Default	Type	Description		
١,	7:0	0	R/W	Write B0H to this register will reset all the registers to default			
′	.0	softrst_ctr	00H	K/VV	value, the read value always keep "00H".		

Absolute Maximum Ratings

	Items			
POWER IN/	OUT Pins Voltage	-0.3 to 6.0	\ \	
(IN1,IN2,IN34,IN56,OUT1,OUT	T2,OUT3.OUT4,OUT5,OUT6,VSYS)	-0.3 to 6.0	V	
Other	Pin Voltage	-0.3 to V _{SYS} +0.3	V	
Each Load Switch	Maximum Load Current	2.0	А	
Maximum Po	ower Consumption	1200	mW	
Operating Jur	nction Temperature	-40 to 150	°C	
Storage	Temperature	-65 to 150	۰C	
Lead Temperatu	re (Soldering, 10 sec)	300	°C	
ESD	НМВ	±2000		
ESD	CDM	±500	V	

Electrical Characteristics

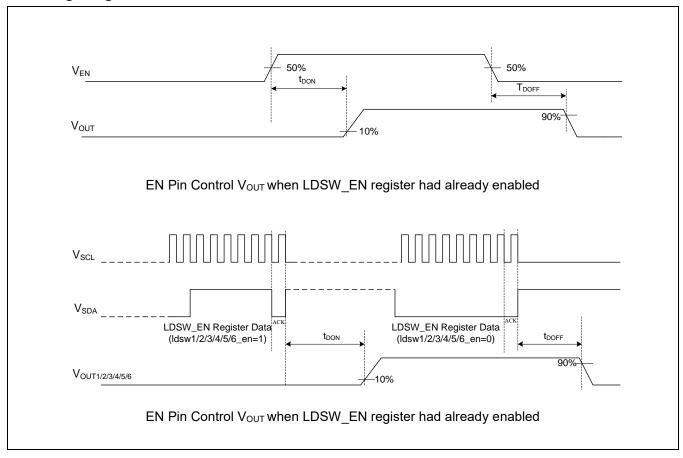
Unless otherwise noted , Cvsys=1uF , T_A = -40 °C ~85 °C. Typical values are at. T_A =25 °C

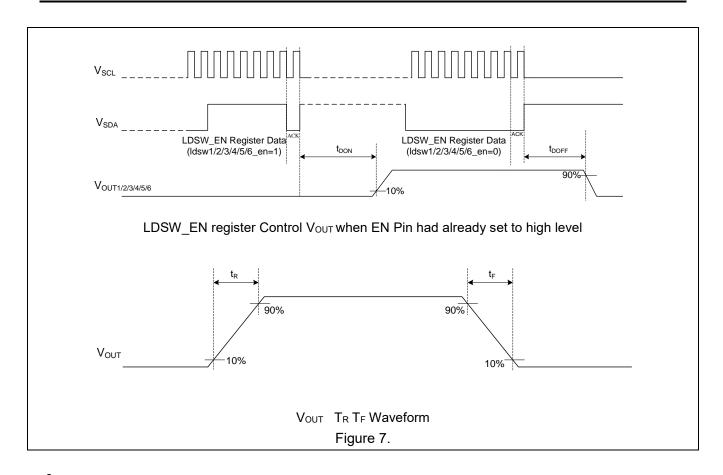
Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Vvsys	VSYS Voltage Range		1.6		5.5	V
1		Active mode: V _{EN} =V _{VSYS}			1	
IQ_ON		and Enable chip by I ² C			'	μA
	VSYS Current	V _{EN} =0V and				
I _{Q_OFF}		Vaddr=Vscl=Vsda=0 or			1	μA
		Vaddr=Vscl=Vsda=Vvsys				
R _{EN}	EN pin pull down Resistance		8	12		ΜΩ
I _{EN}	EN Leakage	V _{EN} =5V			0.6	μA
V_{ENH}	EN Input Voltage High		1.4			V
V _{ENH1}	EN Input Voltage High	V _{SYS} =1.8V	1.1			V
V _{ENL}	EN Input Voltage Low				0.3	V
V _{I2CH}	SCL/SDA Input Voltage High		1.4			V
V _{I2CH1}	SCL/SDA Input Voltage High	V _{SYS} =1.8V	1.1			V
V _{I2CL}	SCL/SDA Input Voltage Low				0.3	V
Vol	SDA Logic Low Output	3mA Sink			0.4	V
		EN=0 and				
l _{12C}	SCL/SDA Input Current	$V_{SCL}=V_{SDA}=V_{VSYS}$ or		0.1		uA
		V _{SCL} =V _{SDA} =0				
FscL	SCL Clock Frequency				400	kHz

Electrical Characteristics(Continued)

Unless otherwise noted, V_{IN1} = V_{IN2} = V_{IN34} = V_{IN56} =1.2 to 5.5V, T_A = -40 to +85°C;

Typical values are at V_{INX} = 3.3V and T_{A} = 25°C. V_{VSYS} =1.6V to 5.5V

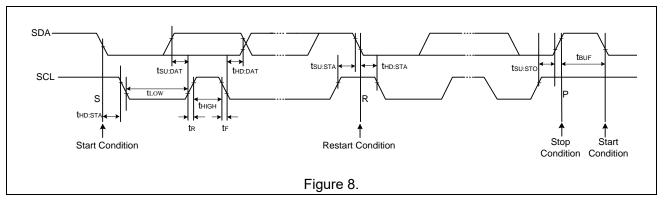

Symbol	Parameter	Test Conditions	Min	Тур	Max	Unit
Basic Opera	ation					
V _{INX}	Input Voltage		1.2		5.5	V
	Off Supply Current of	V _{EN} =GND, V _{OUTX} floating, V _{INX} =5V			0.5	
$I_{QX(OFF)}$	one channel LS	V _{EN} =GND, V _{OUTX} floating, V _{INX} =3.3V			0.5	uA
	T _A =25°C	V _{EN} =GND, V _{OUTX} floating, V _{INX} =1.8V			0.5	
	Shutdown Current of	V _{EN} = GND, V _{OUTX} =0V, V _{INX} =5V			0.5	
I_{SD}	one channel LS	V_{EN} = GND, V_{OUTX} =0V, V_{INX} =3.3V			0.5	μA
	T _A =25°C	V _{EN} =GND, V _{OUTX} =0V, V _{INX} =1.8V			0.5	
	Quiescent Current of	V_{EN} = V_{VSYS} , I_{OUTX} = 0 mA, V_{INX} = 5 V			0.5	
I_Q	one channel LS	$V_{EN} = V_{VSYS}$, $I_{OUTX}=0$ mA, $V_{INX}=3.3$ V			0.5	μA
	T _A =25°C (RCB off)	$V_{EN} = V_{VSYS}$, $I_{OUTX}=0$ mA, $V_{INX}=1.8$ V			0.5	
	Quiescent Current of	V_{EN} = V_{VSYS} , I_{OUTX} = 0 mA, V_{INX} = 5 V		1.5	4	
I_{Q_R}	one channel LS	$V_{EN} = V_{VSYS}$, $I_{OUTX}=0$ mA, $V_{INX}=3.3$ V		0.9	2.5	μΑ
	T _A =25°C(RCB on)	$V_{EN} = V_{VSYS}$, $I_{OUTX}=0$ mA, $V_{INX}=1.8$ V 0.3		0.3	0.8	
	On-Resistance	V _{INX} =5V, I _{OUTX} =200mA		52	70	
Ron	T _A =25°C	V _{INX} =3.3V, I _{OUTX} =200mA		66	85	$m\Omega$
	TA=25°C	V _{INX} =1.8V, I _{OUTX} =200mA		120	150	
$R_{\mathtt{PD}}$	OUT pin Discharge	$V_{INX} = 3.3V$, $EN = 0V$,		66	100	Ω
MPD	Resistance (default)	$V_{OUTX}=1V$, $T_A=25$ °C		00	100	12
True Revers	se Current Blocking					
V _{T_RCB}	RCB Protection	Vout - Vinx		60		mV
A I_KCR	Trip Point	VOUI - VINX		00		IIIV
V_{R_RCB}	RCB Protection	Vinx - Vout		65		mV
V K_KCD	Release Trip Point	VIIIX VOOT	V001			111 V
	RCB Hysteresis			125		mV
I _{SD_OUT}	VOUT Shutdown	LSW off, V _{OUT} =5.0V, V _{IN} =Short to GND		1.4		uA
.00_001	Current	2011 011, 1001 0101, 1111 0110110 0110				
	RCB Response					
T_{RCB}_{ON}	Time when	V _{OUT} - V _{IN} =200mV, V _{ON} =High		3		uS
	Device ON ⁽¹⁾					
T _{RCB_OFF}	RCB Response Time	VIN - VOUT =200mV, VON=High		4		uS
	Device OFF ⁽¹⁾					
		ions Below(default mode)	1		1	<u> </u>
t _{DON}	Turn-On Delay ^(1,2)	$V_{INX} = 3.3V$, $R_L = 150\Omega$,		270		_
t _R	Vout Rise Time ^(1.2)	C _L =0.1µF,T _A =25℃		340		us
tdon	Turn-On Delay (1,2)	$V_{INX} = 3.3V$, $R_L = 500\Omega$,		250		_
t _R	V _{OUT} Rise Time ^(1.2)	C∟=0.1µF,T _A =25°C		320		


t _{DOFF}	Turn-Off Delay (1,2)	V _{INX} =3.3V, R _L =150Ω,	0.8	
t_{F}	V _{OUT} Fall Time ^(1,2)	C∟=0.1µF,T _A =25°C	10.5	
t _{DOFF}	Turn-Off Delay (1,2)	V_{INX} =3.3V, R_L =500 Ω ,	1.1	us
t _F	V _{OUT} Fall Time ^(1,2)	C_L =0.1 μ F, T_A =25 $^{\circ}$ C	14	
t _{DON}	Turn-On Delay ^(1,2)	V_{INX} =1.8V, R_L =150 Ω ,	560	
t_R	V _{OUT} Rise Time ^(1.2)	C_L =0.1 μ F, T_A =25 $^{\circ}$ C	560	
tDOFF	Turn-Off Delay (1,2)	V_{INX} =1.8 V , R_L =150 Ω ,	0.9	us
t₅	Vout Fall Time(1,2)	C_L =0.1 μ F, T_A =25 $^{\circ}$ C	12.6	

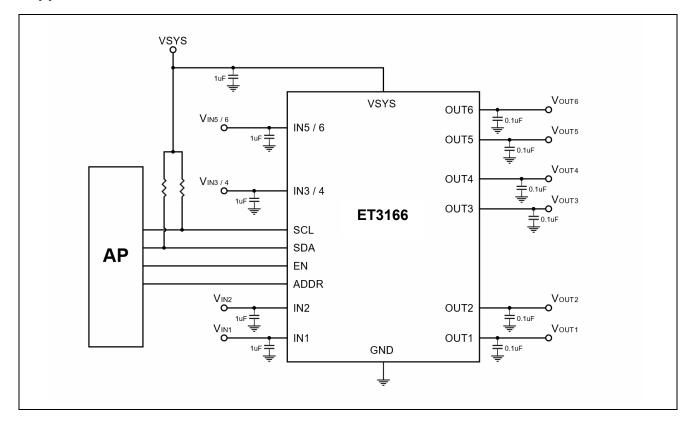
Notes:

- 1. This parameter is guaranteed by design and characterization; not production tested.
- 2. $t_{DON}/t_{DOFF}/t_R/t_F$ are defined in Figure 3.

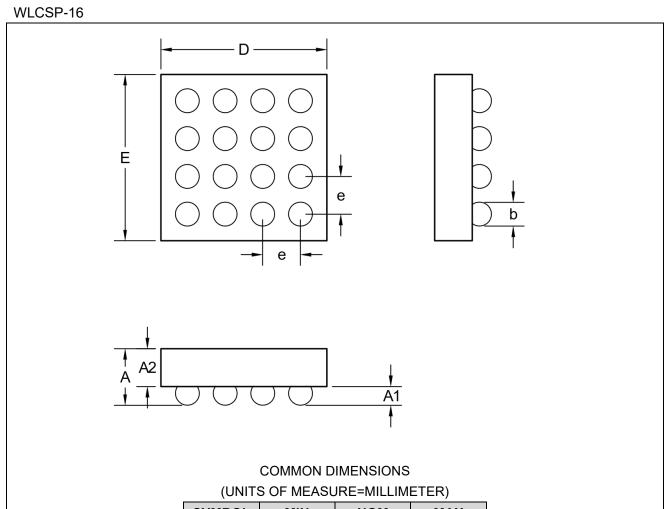
Timing Diagram


I²C Mode Timing

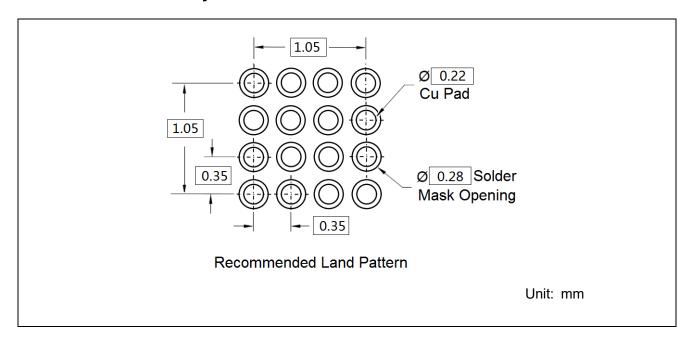
Symbol	Parameter	Min	Тур	Max	Unit
F _{SCL}	SCL Clock Frequency	0	-	400	KHz
t _{BUF}	Bus Free Time Between a STOP and START Condition	1.3	-	-	μs
t _{HD:STA}	Hold Time(Repeated) START Condition	0.6	-	-	μs
t_{LOW}	Low Period of SCL Clock	1.3	-	-	μs
t _{HIGH}	HIGH Period of SCL Clock	0.6	-	-	μs
t _{SU:STA}	Setup Time for a Repeated START Condition	0.6	-	-	μs
t _{HD:DAT}	Data Hold Time	-	-	0.9	μs
t _{SU:DAT}	Data Setup Time	100	-	-	ns
t _R	Data Hold Time2	20+0.1Cb ⁽³⁾	-	300	ns
t_{F}	Data Hold Time2	20+0.1Cb ⁽³⁾	-	300	ns
t _{SU:STO}	Setup Time for STOP Condition	0.6	-	-	μs


19

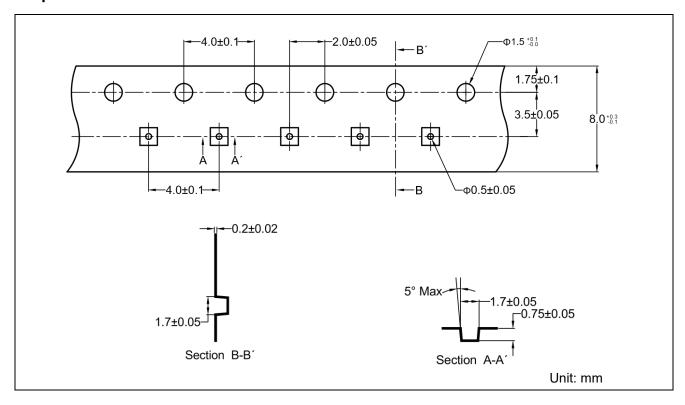
Note3: Cb=total capacitance of one bus line in PF.


I²C mode Timing Diagram

Application Circuits



Package Dimension



SYMBOL	MIN	NOM	MAX				
Α	0.430	0.480	0.530				
A1	0.110	0.130	0.150				
A2	0.320	0.350	0.380				
b	0.140	0.160	0.180				
D	1.520	1.540	1.560				
Е	1.520	1.540	1.560				
е		0.350BSC					

Recommended PCB Layout

Tape Information

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking
1.0	2021-5-31	Initial Version	Wuxj	Wuxj	Liujy
1.1	2021-11-4	Add VIH@VSYS =1.8V	Wuxj	Wuxj	Liujy
1.2	2022-8-21	Update Typeset	ShiB	Wuxj	Liujy