

High-Speed USB 2.0(480Mbps) Switch

General Description

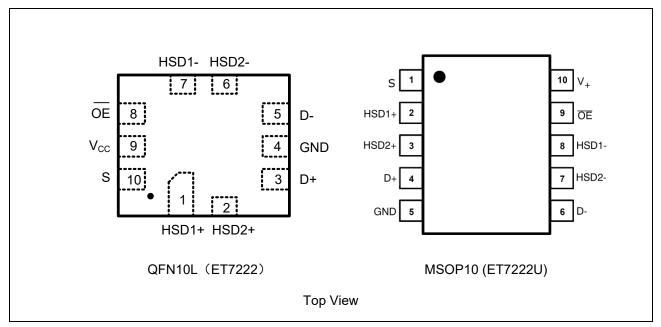
The ET7222 is a 2CH single-pole/double-throw (SPDT) switches. Their wide bandwidth and low bit-to-bit skew allow them to pass high-speed differential signals with good signal integrity.

Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference. Their bandwidth is wide enough to pass High-Speed USB 2.0 differential signals (480 Mb/s).

ET7222 is offered in a QFN10L and MSOP10 package.

Features

- R_{ON} is typically 6.0 Ω @ V_{CC} = 3.3 V
- Low Bit-to-Bit skew is typically 50 ps
- Low crosstalk is typical -37 dB @ 250 MHz
- Low current consumption is 1.0 µA typical
- Near-zero propagation delay is typical 250 ps
- Channel on-capacitance is 8.0 pF typical
- V_{cc} Operating Range from 1.65 V to 4.7 V
- ≥ 750 MHz bandwidth (or data frequency)
- Part No. and package

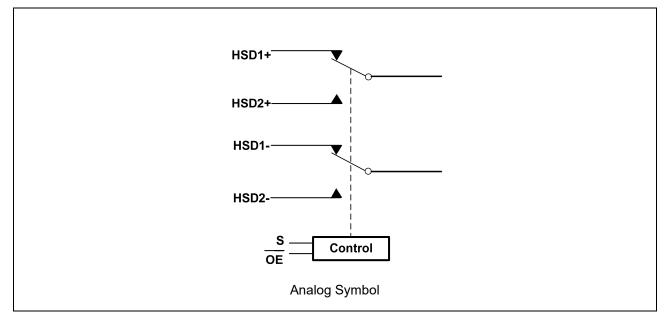

Part No.	Package	MSL	
ET7222	QFN10L(1.8 mm×1.4 mm)	Level 1	
ET7222U	MSOP10(4.9 mm×3.0 mm)	Level 1	

Applications

- Differential Signal Data Routing
- USB 2.0 Signal Routing

ET7222

Pin Configuration


Pin Function

Pin	NO.	Pin Name	Pin Function
ET7222 QFN10L	ET7222U MSOP10	Pin Name	PinFunction
1	2	HSD1+	Data Ports
2	3	HSD2+	Data Ports
3	4	D+	Data Ports
4	5	GND	Ground
5	6	D-	Data Ports
6	7	HSD2-	Data Ports
7	8	HSD1	Data Ports
8	9	ŌĒ	Output Enable
9	10	VCC	Power supply
10	1	S	Select Input

Truth Table

OE	S	HSD1+ to D+, HSD1- to D-	HSD2+ to D+, HSD2- to D-
1	Х	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

Analog Symbol

Symbol	Pins	Parameters	Value	Unit
Vcc	Vcc	Positive DC Supply Voltage	-0.5 to +5.5	V
Vis	HSD1+,HSD1-,HSD2+,HSD2-	Appleg Signal Voltage	-0.5 to V _{CC} +0.3	V
VIS	D+,D-		-0.5 to +5.5	v
Vin	ŌĒ	Control Input Voltage	-0.5 to +5.5	V
lcc	Vcc	Positive DC Supply Current	50	mA
he eeu	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Continuous	±100	mA
lis_con	D+,D-	Current-Closed Switch	± 100	ША
lie ev	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Continuous	±150	mA
I _{IS_PK}	D+,D-	Current 10% Duty Cycle	± 150	IIIA
lin	ŌĒ	Control Input Current	±20	mA
TJ		Junction Temperature Range	-40 to +150	°C
T _{STG}		Storage Temperature	-65 to +150	°C

Absolute Maximum Ratings

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions

Symbol	Pins	Parameter	Min	Max	Unit
Vcc		Positive DC Supply Voltage	1.65	4.7	V
Ma	HSD1+,HSD1-,HSD2+,HSD2-	Analog Signal Valtage	GND	Vcc	V
Vis	D+,D-	Analog Signal Voltage	GND	4.7	v
Vin	ŌĒ	Digital Select Input Voltage	GND	Vcc	V
TA		Operating Temperature Range	-40	+85	°C

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

DC Electrical Characteristics

Control Input (Typical: $T_A = 25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$)

Symbol	ol Pins Paramete	Parameter	Conditions	V., ())	-40°C to +85°C			unit
Symbol	FIIIS	Falailletei	Conditions	V _{CC} (V)	Min	Тур	Max	um
		Control Input		2.7	1.3			
VIH	ŌĒ	High Voltage ⁽¹⁾		3.3	1.4	-	-	V
		Tigh Vollage		4.2	1.6			
		DE Control Input Low Voltage ⁽¹⁾		2.7			0.4	
VIL	ŌĒ			3.3	-	-	0.4	V
				4.2			0.5	
	Control Input	$0 \le V_{IS} \le V_{CC}$	1.65 ~ 4.7			±1.0		
lin	ŌĒ	Leakage Current		1.05 ~ 4.7	-	-	±1.0	μA

Note1: V_{IH} level is recommended to be consistent with V_{CC} and V_{IL} level is GND to reduce I_{CC} current.

Supply And Leakage Current	(Typical: $T_A = 25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$,	\overline{OE} = V _{CC} or GND, S = V _{CC} or GND)
----------------------------	--	---

Symphol	Dine	Devenueter	Devemeter Conditions		-40°C to +85°C		unit
Symbol	Pins	Parameter Conditions		V _{CC} (V)	Min	Max	unit
1	Vcc	Quiescent Supply	V_{IS} = V_{CC} or GND;	1.65 ~ 4.7		1.0	
lcc	VCC	Current	I _{ОUT} = 0 А	1.05 ~ 4.7		1.0	μA
Ісст	Vcc	Increase in Icc per	V _{IN} = 2.6 V	3.6		10	
ICCI	VCC	Control Voltage	VIN - 2.0 V	5.0		10	μA
	HSD1+						
loz	HSD1-	OFF Stage	$0 \le V_{IS} \le V_{CC}$	1.65 ~ 4.7		±1.0	
IOZ	HSD2+	Leakage Current	$0 \leq V \leq V cc$	1.05 ~ 4.7		±1.0	μA
	HSD2-						
loss	D+, D-	Power OFF	0 ≤ V _{IS} ≤ 4.7 V	0		±1.0	
IOFF	רש, ש-	Leakage Current	0 2 VIS 2 4.7 V	0		±1.0	μA

High Speed On Resistance (Typical: $T_A = 25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$)

Symbol	Symbol Pins	Deremeter	ameter Conditions		-40°C to +85°C			unit
Symbol	FIIIS	Farameter		V _{cc} (V)	Min	Тур	Max	um
				2.7		6.5	12	
Ron		On-Resistance		3.3	-	6.0	10	Ω
				4.2		5.5	8	
			V _{IS} = 0.2 V,	2.7		0.3	1.5	
RFLAT		On-Resistance Flatness	0.4 V	3.3	-	0.2	1	Ω
			I _{ON} = 8 mA	4.2		0.1	0.5	
				2.7		0.25	0.5	
$\triangle R_{ON}$		On-Resistance Matching		3.3	-	0.2	0.45	Ω
				4.2		0.15	0.4	

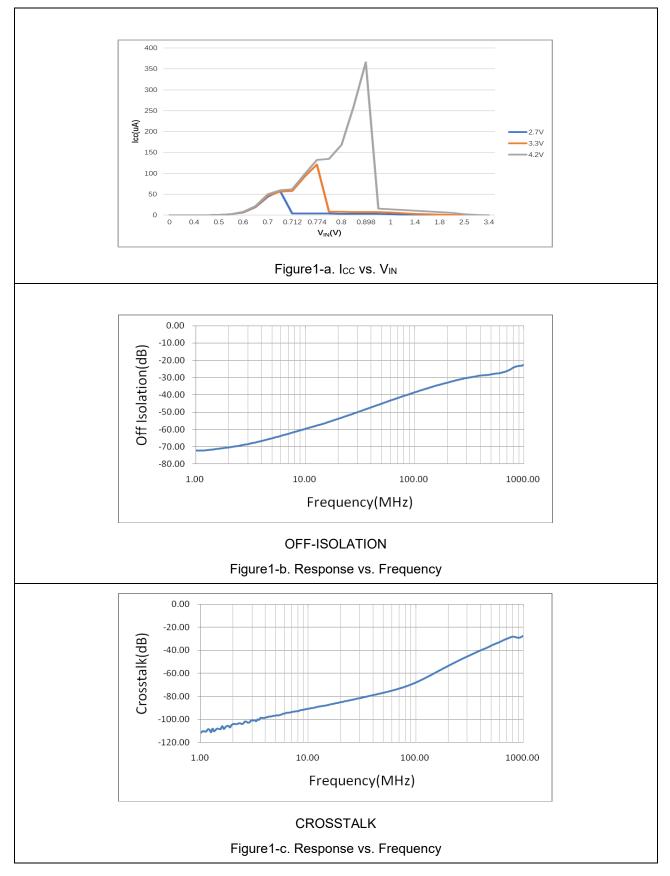
Symbol	Pins	Parameter	Conditions	V., (\/)	-40°C to +85°C			unit
Symbol	FIIIS		Conditions	V _{cc} (V)	Min	Тур	Max	um
				2.7		9.0	12.5	
Ron		On-Resistance	VIS=0.2VCC,	3.3	-	7.5	10.5	Ω
		0.5Vcc,	4.2		6.0	8.5		
			$0.8V_{CC}$, V_{CC}	2.7		0.5	0.8	
$\triangle R_{ON}$		On-Resistance Matching	I _{ON} = 8 mA	3.3	-	0.4	0.7	Ω
				4.2		0.3	0.6	
			V _{IS} =0.2V,	2.7		1.0	3	
R _{FLAT}		On-Resistance Flatness	0.4V,	3.3	-	0.5	1.5	Ω
			0.7V,1.0V	4.2		0.4	1.2	
			I _{ON} = 8 mA					

Full Speed On Resistance (Typical: T_A = 25 °C, V_{CC} = 3.3 V)

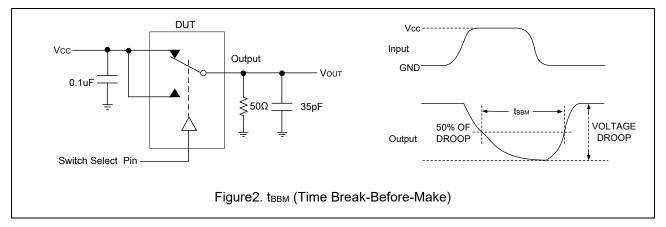
AC Electrical Characteristics

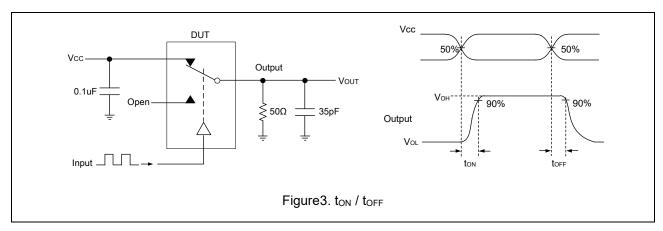
Symbol	Pine	Pins Parameter Co	Conditions		-40	unit		
Symbol	FIIIS	Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	um
ton	Closed to Open	Turn-ON Time		2.7 ~ 4.7	-	14	30	ns
toff	Open to Closed	Turn-OFF Time		2.7 ~ 4.7	-	22	30	ns
t		Break-Before-	V _{IS} = 0 V	2.7 ~ 4.7	2	2 8	-	20
tввм		Make Delay	to V _{CC}		2			ns
BW		-3 dB	C∟= 5 pF	2.7 ~ 4.7	-	550	-	MHz
DVV		Bandwidth	C∟= 0 pF	Z.1 ² 4.1	-	750	-	

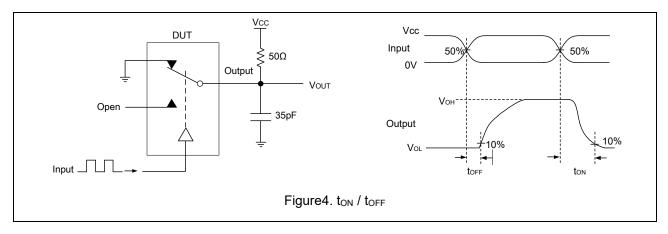
Isolation (Typical: $T_A = 25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$, $R_L = 50 \Omega$, $C_L = 5 \text{ pF}$)

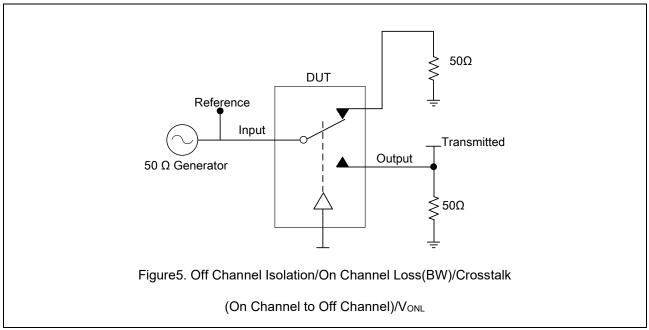

Symbol	Pins	Parameter	Conditions	V _{cc} (V)	-40°C to +85°C			unit
					Min	Тур	Max	um
OIRR	Open	OFF-Isolation	f= 250 MHz	1.65 ~ 4.7	-	-25	-	dB
X _{TALK}	HSD1+ to	Non-Adjacent	f= 250 MHz	1.65 ~ 4.7	-	-37	-	dB
	HSD1-	Channel Crosstalk						

Capacitance (Typical: $T_A = 25 \text{ °C}$, $V_{CC} = 3.3 \text{ V}$, f = 1 MHz)


Symbol	Pins	Parameter	Conditions	V _{cc} (V)	-40°C to +85°C			unit
					Min	Тур	Max	um
C _{IN}		Control Pin Input		0		1.8		pF
	ŌĒ	Capacitance						
Con	D+ to	ON Capacitance	V _{OE} = 0 V	3.3		8.0		pF
	HSD1/2+							
Coff	HSD2+,	OFF Capacitance	V _{IS} = 3.3 V	3.3		3.5		pF
	HSD2-	V _{OE} = 3.3 V 3.	3.3		3.5		μL	


ET7222

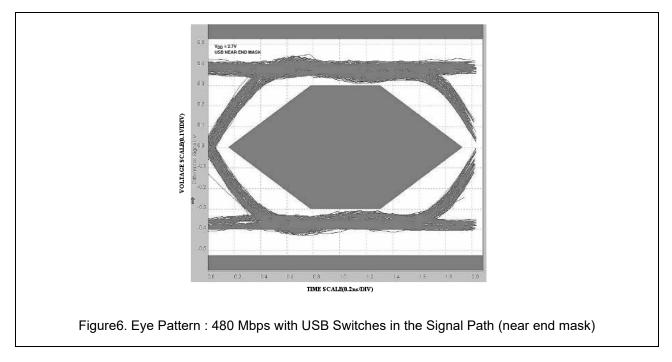

Typical Characteristics

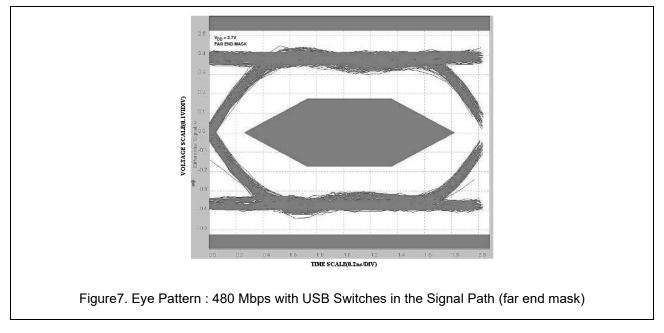

Test Circuit and Waveform

Test Circuit and Waveform(Continued)

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

 $V_{\text{ISO}} = \text{Off Channel Isolation} = 20 \text{ Log} \bigg(\frac{V_{\text{OUT}}}{V_{\text{IN}}} \bigg) \ \text{for } V_{\text{IN}} \text{ at 100 kHz}.$

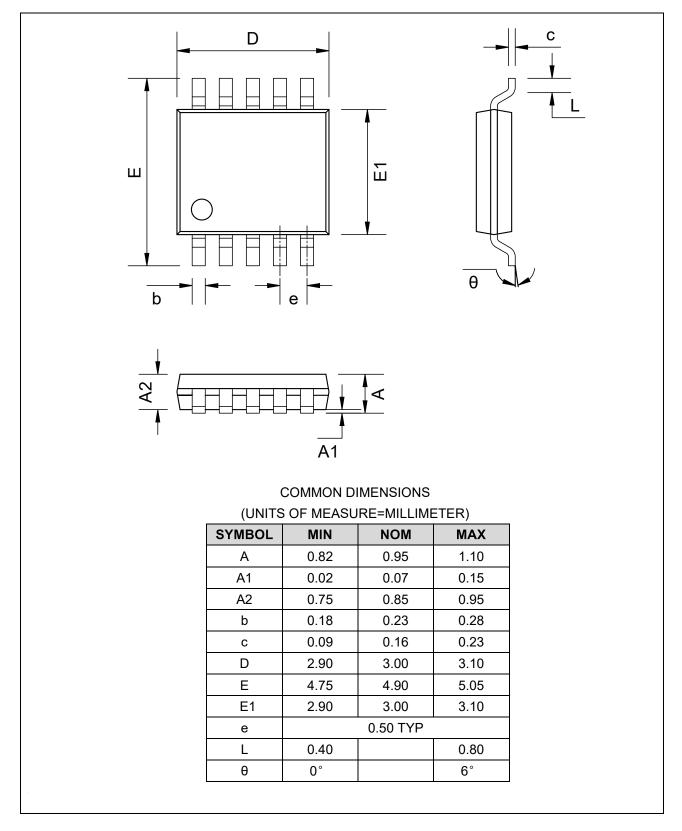

 $V_{\text{ONL}} = \text{On Channel Loss} = 20 \text{ Log} \bigg(\frac{V_{\text{OUT}}}{V_{\text{IN}}} \bigg) \ \text{for } V_{\text{IN}} \text{ at } 100 \text{ kHz to } 50 \text{ MHz}.$


Bandwidth (BW) = the frequency 3 dB below V_{ONL} .

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω .

Typical Performance Curves


 T_A = +25 °C, Unless Otherwise Specified



Package Dimension

QFN10L

MSOP10

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking	
1.0	2012-08-07	Preliminary Version	Liuxm	Liuxm	Zhujl	
1.1	2016-02-01	Add some parameters	Liuxm	Liuxm	Zhujl	
1.2	2017-03-10	Updated typo	Wuxj	Wuxj	Zhujl	
1.3	2019-02-01	Update format	Liuxm	Liuxm	Liujy	
	2019-04-12	According to the test results Update		Liuxm	Liujy	
		Typical Value of On-Resistance				
1.4		Flatness, On-Resistance Matching ,	Liuxm			
		Turn-OFF Time, OFF-Isolation,				
		Non-Adjacent Channel Crosstalk				
	2019-06-25	Updated:		Liuxm		
		1.VIH,VIL Test Spec			Zhujl	
		2.RON,RFLAT,∆RON Test Conditions				
4.5		3. RFLAT Test Spec	Liuxm			
1.5		4.Add max RON, RFLAT, ∆RON value				
		5.Add Min tBBM value				
		6. ICC vs. VIN,				
		OFF-ISOLATION,CROSSTALK graph				
1.0	2019-09-29	Update OFF-ISOLATION and			Zhujl	
1.6		CROSSTALK	Liuxm	Liuxm		
1.7	2020-03-06	Documents check and formalize	Shib	Shib	Liujy	
1.8	2022-08-31	Update Typeset	Qinpl	Qinpl	Liujy	
	2023-12-14	Update Con 、Coff spec according to		Luhao	Liujy	
1.9		measured data;	Wangp			
		Update Vcc range to 4.7V				