High-Current Over-voltage Protectors with Adjustable OVLO and Integrated Reverse Blocking FET

General Description

ET9919B can disconnect the systems from its output pin(OUT) in case wrong input operating conditions are detected. It achieve wide input voltage range from 2.5V to 26V and reverse blocking voltage up to 36V. The inside reverse blocking FET prevents the leakage current from output side to input side when input power supply is removed. ET9919B has an internal 14.5V OUT over-voltage protect threshold voltage and thresholds can also be programmed by outside OVLO pin. High accuracy current indicator is set internally. Default 7.5A over current protection is also set inside. Enable control is available to cut off the energy path. ET9919B has internal Thermal-Shutdown Protection.

The device is packaged in advanced WLCSP12, which is ideal for small form factor portable equipment .

Features

- 4A continuous current capability
- Typical R_{ON} is $38m\Omega$ from input to output power path
- VIN operating range from 2.5V to 26V
- Internal reverse blocking FET up to 36V
- Internal OUT over-voltage lockout is 14.5V typical
- Programmable OVP through outside resistors connected to OVLO pin
- Over-voltage protection response time is70ns typical
- +/- 4% High accuracy current indicator
- Startup debounce time is 7.0ms typical
- Internal thermal-shutdown protection
- ESD protected: Human Body Model: JESD22-A114(All pins) ± 2KV
- MSL1
- Pat No. and Package

Part No.	Package		
ET9919B	WLCSP12 (1.77mm×1.47mm, ball pitch=0.4mm)		

Application

- Smartphones, Tablet PC
- Mobile Devices
- Tablet PCs

Pin Configuration

Pin Function

Pin No.	Pin Name	Function		
		External OVLO Adjustment. Connect OVLO to GND when using the internal		
A1	OVLO	threshold. Connect a resistor-divider to OVLO to set a different OVLO threshold;		
		this external resistor-divider is completely independent of the internal threshold.		
A2	EN	Device Enable. Active high.		
A3	ISNS	Current Indicator pin.		
A4	GND	Ground. Connect GND pins together for proper operation.		
B1,B2,B3,B4	B1,B2,B3,B4 IN Voltage Input. Connect IN pins together for proper operation.			
C1,C2,C3,C4	OUT	Output Voltage. Output of internal switch.		
01,02,03,04		Connect OUT pins together for proper operation.		

Block Diagram

Functional Description

The OVP switch and reverse blocking FET are total $38m\Omega$ (TYP) on-resistance (R_{ON}) and protect low-voltage systems against voltage faults up to 36VDC. If EN is in the logic high state, when the output voltage (V_{OUT}) exceeds 14.5V, the internal FET is quickly turned off to prevent damage to the protected downstream components. If EN is in the logic low state, the switch will be shutdown.

Reverse blocking FET can prevent the leakage current from output side to input side when the input power is removed. The RCB voltage is up to 36V.

Over-voltage Protection

When V_{OVLO} is set lower than 0.25V. The over-voltage protection threshold is 14.5V.

The over-voltage protection threshold can also be adjusted by external resistors when V_{OVLO} is set higher than 0.3V.

$$V_{OUT_OVLO} = V_{OVLO_TH} \times (1+R1/R2)$$

Note: V_{OVLO_TH} = 1.20V (TYP.)

Current Indicate

Load current can be indicated by ISNS pin. It has high accuracy which is up to +/- 4%. Also a 7.5A over current protection is integrated inside.

Thermal Shutdown

The internal FET turns off when the junction temperature exceeds +160° C (TYP.). The device exits thermal shutdown after the junction temperature cools by 20° C (TYP.) and holds more than 100ms.

Input Capacitor

To limit the voltage drop on the input supply caused by transient inrush current when the switch turns on into load capacitor or short-circuit, a 1μ F or lager capacitor must be placed between the IN and GND pins.

Output Capacitor

A 1 μ F or lager capacitor should be placed between the OUT and GND pins.

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameters	Min	Max	Unit
VIN, VEN, VOVLO	IN/EN/OVLO to GND	-0.3	36	V
Vout	OUT to GND	-0.3	29	V
VISNS	ISNS to GND	-0.3	7	V
Isw1	Maximum Continuous Current of switch IN-OUT		4	А
lsw2	Maximum Peak Current of switch IN-OUT(10ms)		5	А
PD	Power Dissipation at T _A = +70°C		960	mW
Tstg	Storage Junction Temperature	-65	+150	°C
TA	Operating Temperature Range	-40	+85	°C
T _{SOLD}	Soldering Temperature (reflow)		+260	°C
T _{JMAX}	Max Junction Temperature		+150	°C

Electrical Characteristics

Unless otherwise noted, typical values are at V_{IN}=5V and T_A=25^{\circ}C.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
Basic Opera	Basic Operation							
Vin	Input Voltage		2.5	2.5		V		
V _{RB}	Reverse Blocking				26	V		
	Range					v		
l _{iN}	VIN Quiescent Current	V _{IN} =5V, OUT floating		100		μA		
I _{RB}	Reverse Blocking			3	6	uA		
	Current	VIN=0V, VOUT=16V, EN=0V						
Isd	Shutdown Current	V _{IN} =5V, EN=0V		13	18	uA		
Ron	On-Resistance of			mΩ				
	Switch IN-OUT	V _{IN} =5.0V, I _{OUT} =1A		38		11152		

Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
	Overvoltage	Vout rising	13.5 14.5 15		15.5	- V	
Vovlo	Protect of VOUT	Vout falling		14.2			
	Over-voltage Protect			0.30		V	
	Hysteresis of V _{IN}			0.00		v	
Vovlo_adj	Adjustable OVLO		4		20	V	
10120_100	Threshold Range						
Vovlo_th	OVLO Set Threshold		1.16	1.20	1.24	V	
Vovlo_sel	External OVLO		0.2		0.3 V	V	
	Select Threshold		-				
Vuvlo_r	Under Voltage	V _{IN} rising		2.4	2.7	v	
VOVEO_I	Lockout Threshold	V _{IN} falling		2.3			
V _{ISNS} (1)	Current Indicator	I _{OUT} =0.5A,R _{SNS} =806Ω	302	315	328	mV	
VISNS	Accuracy	Iout=1.0A,Rsns=806Ω	604	630	656	mV	
	Sampling Ratio			1280			
M	EN Input Logic		1.0			V	
VIH	High Voltage					v	
VIL	EN Input Logic				0.3	V	
VIL	Low Voltage				0.0	•	
T _{SHDN}	Thermal Shutdown			160		°C	
Tshdn_hys	Thermal-Shutdown			20		°C	
	Hysteresis			20		Ũ	
Dynamic Cha	aracteristics		[1	1	1	
t _{DEB}	Debounce Time	Time from 2.1V <vin<vovlo< td=""><td></td><td>7.0</td><td></td><td>ms</td></vin<vovlo<>		7.0		ms	
		to Vout=10% of VIN					
t _{ON}	Switch Turn-On Time	R _L =100Ω, C _L =22uF, V _{OUT}		2.0		ms	
toff_res ⁽²⁾	Switch Turn-off	from 0.1×V _{IN} to 0.9×V _{IN}					
	Response Time	$V_{IN} > V_{OVLO}$ to V_{OUT} stop rising		70		ns	
	Пезропзе Пше	Disable to Vout=10% Vin					
t _{OFF}	Switch Turn-off Time	V_{IN} =5.0V, C_{OUT} =10 μ F,	2.6			ms	
•OrF		Rout=100Ω			-	_	

Note1: Current Indicator Voltage can be calculated as below equation.

$$V_{ISNS} = \frac{I_{OUT} \times R_{SNS}}{K}$$

Note2: Guaranteed by characterization and design.

Timing Diagrams

Application Circuits

Notes*:

- This electric circuit only supplies for reference.
- Recommended RISNS value is $500\Omega \sim 2000\Omega$.
- If the ISNS function is not used, the ISNS pin must be short-circuited to GND,can't be floating.

Package Dimension

WLCSP12

Marking

Tape Information

Revision History and Checking Table

Version	Date	Revision Item	Modifier	Function & Spec Checking	Package & Tape Checking	
1.0	2021-1-13	Original Version	Yangz	Yangz	Zhujl	
		1. Modify Maximum Continuous		Yangz	Zhujl	
		Current from 5A to 4A	Yangz			
1.1	2021-3-31	2. Modify Maximum Peak Current of				
1.1	2021-3-31	switch from 7A to 5A				
		3. Add Note of VISNS calculate				
		equation.				
1.2	2023-4-19	Update Typeset	Shib	Vanaz	Zhujl	
1.2		Add application diagram notes	anne	Yangz		